精英家教网 > 高中数学 > 题目详情
已知A,B是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个顶点,P为双曲线上(除顶点外)的一点,若直线PA,PB的斜率乘积为
1
2
,则双曲线的离心率e=(  )
分析:根据题意得A(-a,0),B(a,0).设P(m,n),利用直线的斜率公式算出kPA•kPB=
n2
m2-a2
.由点P是双曲线上的点,坐标代入双曲线方程化简整理得n2=
b2(m2-a2)
a2
,从而得出kPA•kPB=
b2
a2
=
1
2
,由此得到a、c的关系式,从而解出双曲线的离心率e的值.
解答:解:由题意,可得A(-a,0),B(a,0),设P(m,n)
∴kPA•kPB=
n-0
m+a
n-0
m-a
=
n2
m2-a2

∵点P是双曲线上的点,可得
m2
a2
-
n2
b2
=1
,化简整理得n2=
b2(m2-a2)
a2

∴kPA•kPB=
b2(m2-a2)
a2
m2-a2
=
b2
a2

∵直线PA,PB的斜率乘积为
1
2
,即kPA•kPB=
1
2

b2
a2
=
1
2
,可得
c2-a2
a2
=
1
2
,即
c2
a2
-1=
1
2

c2
a2
=
3
2
,可得e=
c
a
=
3
2
=
6
2

故选:B
点评:本题给出双曲线满足的条件,求双曲线的离心率.着重考查了直线的斜率公式、双曲线的简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1、F2是双曲线
x2
a2
-
y2
b2
=1
的左、右焦点,点P(x,y)是双曲线右支上的一个动点,且|PF1|的最小值为8,
PF1
PF2
的数量积
PF1
PF2
的最小值是-16.
(1)求双曲线的方程;
(2)过点C(9,16)能否作直线l与双曲线交于A、B两点,使C为线段AB的中点.若能,求出直线l的方程;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确命题的个数是(  )
①命题“?x∈R,使得x3+1<0”的否定是““?x∈R,都有x3+1>0”.
②双曲线
x2
a2
-
y2
b2
=1(a>0,a>0)中,F为右焦点,A为左顶点,点B(0,b)且
AB
BF
=0,则此双曲线的离心率为
5
+1
2

③在△ABC中,若角A、B、C的对边为a、b、c,若cos2B+cosB+cos(A-C)=1,则a、c、b成等比数列.
④已知
a
b
是夹角为120°的单位向量,则向量λ
a
+
b
a
-2
b
垂直的充要条件是λ=
5
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中,正确命题的个数是(  )
①命题“?x∈R,使得x3+1<0”的否定是““?x∈R,都有x3+1>0”.
②双曲线
x2
a2
-
y2
b2
=1(a>0,a>0)中,F为右焦点,A为左顶点,点B(0,b)且
AB
BF
=0,则此双曲线的离心率为
5
+1
2

③在△ABC中,若角A、B、C的对边为a、b、c,若cos2B+cosB+cos(A-C)=1,则a、c、b成等比数列.
④已知
a
b
是夹角为120°的单位向量,则向量λ
a
+
b
a
-2
b
垂直的充要条件是λ=
5
4
A.1 个B.2 个C.3 个D.4 个

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:

的充要条件;

② 已知A、B是双曲线实轴的两个端点,MN是双曲线上关于x轴对称的两点,直线AMBN的斜率分别为k1k2,且的最小值为2,则双曲线的离心率e=

③ 取一根长度为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率是

④ 一个圆形纸片,圆心为OF为圆内一定点,M是圆周上一动点,把纸片折叠使MF重合,然后抹平纸片,折痕为CD,设CDOM交于P,则P的轨迹是椭圆。

其中真命题的序号是                 。(填上所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:

的充要条件;

② 已知A、B是双曲线实轴的两个端点,MN是双曲线上关于x轴对称的两点,直线AMBN的斜率分别为k1k2,且的最小值为2,则双曲线的离心率e=

③ 取一根长度为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率是

④ 一个圆形纸片,圆心为OF为圆内一定点,M是圆周上一动点,把纸片折叠使MF重合,然后抹平纸片,折痕为CD,设CDOM交于P,则P的轨迹是椭圆。

其中真命题的序号是                 。(填上所有真命题的序号)

查看答案和解析>>

同步练习册答案