精英家教网 > 高中数学 > 题目详情
已知在正整数数列{an}中,前n项和Sn满足:Sn=(an+2)2,

(1)求证:{an}是等差数列;

(2)若bn=an-30,求数列{bn}的前n项和的最小值.

(1)证明:由Sn=(an+2)2,         ①

    则Sn-1=(an-1+2)2.           ②

    当n≥2时,an=Sn-Sn-1=(an+2)2-(an-1+2)2,

    整理得(an+an-1)(an-an-1-4)=0.

∴an-an-1=4,即{an}为等差数列.

(2)解:∵S1=(a1+2)2,

∴a1=(a1+2)2,解得a1=2.

∴bn=an-30=[a1+4(n-1)]-30=2n-31.

    令bn<0,得n<.

∴S15为前n项和的最小值,

S15=b1+b2+…+b15=2(1+2+…+15)-15×31=-225.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点(n,an)(n∈N*)在函数f(x)=-6x-2的图象上,数列{an}的前n项和为Sn
(Ⅰ)求Sn
(Ⅱ)设cn=an+8n+3,数列{dn}满足d1=c1dn+1=cdn(n∈N*).求数列{dn}的通项公式;
(Ⅲ)设g(x)是定义在正整数集上的函数,对于任意的正整数x1、x2,恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a为常数,且a≠0),记bn=
g(
dn+1
2
)
dn+1
,试判断数列{bn}是否为等差数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(n,an)(n∈N*)在函数f(x)=-2x-2的图象上,数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,且Tn是6Sn与8n的等差中项.
(1)求数列{bn}的通项公式;
(2)设cn=bn+8n+3,数列{dn}满足d1=c1dn+1=cdn(n∈N*).求数列{dn}的前n项和Dn
(3)设g(x)是定义在正整数集上的函数,对于任意的正整数x1,x2,恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a为常数,a≠0),试判断数列{
g(
dn+1
2
)
dn+1
}
是否为等差数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设C1,C2,…,Cn,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y=
3
3
x
相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,以(λn,0)表示Cn的圆心,已知{rn}为递增数列.
(1)证明{rn}为等比数列(提示:
rn
λn
=sinθ
,其中θ为直线y=
3
3
x
的倾斜角);
(2)设r1=1,求数列{
n
rn
}
的前n项和Sn
(3)在(2)的条件下,若对任意的正整数n恒有不等式Sn
9
4
-
an
rn
成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正整数数列{an}中,a1=3,且对于任意大于1的整数n,点(
an
an-1
)
总在直线x-y-
3
=0
上,则
lim
n→+∞
an
(n+1)2
=(  )

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市东城区普通校高三(下)3月联考数学试卷(理科)(解析版) 题型:解答题

已知点(n,an)(n∈N*)在函数f(x)=-2x-2的图象上,数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,且Tn是6Sn与8n的等差中项.
(1)求数列{bn}的通项公式;
(2)设cn=bn+8n+3,数列{dn}满足d1=c1(n∈N*).求数列{dn}的前n项和Dn
(3)设g(x)是定义在正整数集上的函数,对于任意的正整数x1,x2,恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a为常数,a≠0),试判断数列是否为等差数列,并说明理由.

查看答案和解析>>

同步练习册答案