ÒÑÖª¸´Êýz0=1-mi£¨m£¾0£©£¬z=x+yiºÍw=x'+y'i£¬ÆäÖÐx£¬y£¬x'£¬y'¾ùΪʵÊý£¬iΪÐéÊýµ¥Î»£¬ÇÒ¶ÔÓÚÈÎÒ⸴Êýz£¬ÓÐw=
.
z0
.
z
£¬|w|=2|z|£®
£¨¢ñ£©ÊÔÇómµÄÖµ£¬²¢·Ö±ðд³öx'ºÍy'ÓÃx¡¢y±íʾµÄ¹Øϵʽ£»
£¨¢ò£©½«£¨x¡¢y£©×÷ΪµãPµÄ×ø±ê£¬£¨x'¡¢y'£©×÷ΪµãQµÄ×ø±ê£¬ÉÏÊö¹Øϵ¿ÉÒÔ¿´×÷ÊÇ×ø±êƽÃæÉϵãµÄÒ»¸ö±ä»»£ºËü½«Æ½ÃæÉϵĵãP±äµ½ÕâһƽÃæÉϵĵãQ£¬µ±µãPÔÚÖ±Ïßy=x+1ÉÏÒƶ¯Ê±£¬ÊÔÇóµãP¾­¸Ã±ä»»ºóµÃµ½µÄµãQµÄ¹ì¼£·½³Ì£»
£¨¢ó£©ÊÇ·ñ´æÔÚÕâÑùµÄÖ±ÏߣºËüÉÏÃæµÄÈÎÒ»µã¾­ÉÏÊö±ä»»ºóµÃµ½µÄµãÈÔÔÚ¸ÃÖ±ÏßÉÏ£¿Èô´æÔÚ£¬ÊÔÇó³öËùÓÐÕâЩֱÏߣ»Èô²»´æÔÚ£¬Ôò˵Ã÷ÀíÓÉ£®
£¨¢ñ£©ÓÉÌâÉ裬|w|=|
.
z0
.
z
|=|z0||z|=2|z|
£¬¡à|z0|=2£¬
ÓÚÊÇÓÉ1+m2=4£¬ÇÒm£¾0£¬µÃm=
3
£¬¡­£¨3·Ö£©
Òò´ËÓÉx¡ä+y¡äi=
.
(1-
3i
)
.
(x+yi)
=x+
3y
+(
3x
-y)i
£¬
µÃ¹Øϵʽ
x¡ä=x+
3y
y¡ä=
3x
-y
¡­£¨5·Ö£©
£¨¢ò£©ÉèµãP£¨x£¬y£©ÔÚÖ±Ïßy=x+1ÉÏ£¬ÔòÆä¾­±ä»»ºóµÄµãQ£¨x'£¬y'£©Âú×ã
x¡ä=(1+
3
)x+
3
y¡ä=(
3x
-1)x-1
£¬¡­£¨7·Ö£©
ÏûÈ¥x£¬µÃy¡ä=(2-
3
)x¡ä-2
3
+2
£¬
¹ÊµãQµÄ¹ì¼£·½³ÌΪy=(2-
3
)x-2
3
+2
¡­£¨10·Ö£©
£¨3£©¼ÙÉè´æÔÚÕâÑùµÄÖ±Ïߣ¬¡ßƽÐÐ×ø±êÖáµÄÖ±ÏßÏÔÈ»²»Âú×ãÌõ¼þ£¬
¡àËùÇóÖ±Ïß¿ÉÉèΪy=kx+b£¨k¡Ù0£©£¬¡­£¨12·Ö£©
[½â·¨Ò»]¡ß¸ÃÖ±ÏßÉϵÄÈÎÒ»µãP£¨x£¬y£©£¬Æä¾­±ä»»ºóµÃµ½µÄµãQ(x+
3
y£¬
3
x-y)
ÈÔÔÚ¸ÃÖ±ÏßÉÏ£¬
¡à
3
x-y=k(x+
3
y)+b
£¬
¼´-(
3
k+1)y=(k-
3
)x+b
£¬
µ±b¡Ù0ʱ£¬·½³Ì×é
-(
3
k+1)=1
k-
3
=k
Î޽⣬
¹ÊÕâÑùµÄÖ±Ïß²»´æÔÚ£®                                            ¡­£¨16·Ö£©
µ±b=0ʱ£¬ÓÉ
-(
3
k+1)
1
=
k-
3
k
£¬
µÃ
3
k2+2k-
3
=0
£¬
½âµÃk=
3
3
»òk=-
3
£¬
¹ÊÕâÑùµÄÖ±Ïß´æÔÚ£¬Æä·½³ÌΪy=
3
3
x
»òy=-
3
x
£¬¡­£¨18·Ö£©
[½â·¨¶þ]È¡Ö±ÏßÉÏÒ»µãP(-
b
k
£¬0)
£¬Æä¾­±ä»»ºóµÄµãQ(-
b
k
£¬-
3
b
k
)
ÈÔÔÚ¸ÃÖ±ÏßÉÏ£¬
¡à-
3
b
k
=k(-
b
k
)+b
£¬
µÃb=0£¬¡­£¨14·Ö£©
¹ÊËùÇóÖ±ÏßΪy=kx£¬È¡Ö±ÏßÉÏÒ»µãP£¨0£¬k£©£¬Æä¾­±ä»»ºóµÃµ½µÄµãQ(1+
3
k£¬
3
-k)
ÈÔÔÚ¸ÃÖ±ÏßÉÏ£®
¡à
3
-k=k(1+
3
k)
£¬¡­£¨16·Ö£©
¼´
3
k2+2k-
3
=0
£¬µÃk=
3
3
»òk=-
3
£¬
¹ÊÕâÑùµÄÖ±Ïß´æÔÚ£¬Æä·½³ÌΪy=
3
3
x
»òy=-
3
x
£¬¡­£¨18·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2000•ÉϺ££©ÒÑÖª¸´Êýz0=1-mi£¨m£¾0£©£¬z=x+yiºÍw=x'+y'i£¬ÆäÖÐx£¬y£¬x'£¬y'¾ùΪʵÊý£¬iΪÐéÊýµ¥Î»£¬ÇÒ¶ÔÓÚÈÎÒ⸴Êýz£¬ÓÐw=
.
z0
.
z
£¬|w|=2|z|£®
£¨¢ñ£©ÊÔÇómµÄÖµ£¬²¢·Ö±ðд³öx'ºÍy'ÓÃx¡¢y±íʾµÄ¹Øϵʽ£»
£¨¢ò£©½«£¨x¡¢y£©×÷ΪµãPµÄ×ø±ê£¬£¨x'¡¢y'£©×÷ΪµãQµÄ×ø±ê£¬ÉÏÊö¹Øϵ¿ÉÒÔ¿´×÷ÊÇ×ø±êƽÃæÉϵãµÄÒ»¸ö±ä»»£ºËü½«Æ½ÃæÉϵĵãP±äµ½ÕâһƽÃæÉϵĵãQ£¬µ±µãPÔÚÖ±Ïßy=x+1ÉÏÒƶ¯Ê±£¬ÊÔÇóµãP¾­¸Ã±ä»»ºóµÃµ½µÄµãQµÄ¹ì¼£·½³Ì£»
£¨¢ó£©ÊÇ·ñ´æÔÚÕâÑùµÄÖ±ÏߣºËüÉÏÃæµÄÈÎÒ»µã¾­ÉÏÊö±ä»»ºóµÃµ½µÄµãÈÔÔÚ¸ÃÖ±ÏßÉÏ£¿Èô´æÔÚ£¬ÊÔÇó³öËùÓÐÕâЩֱÏߣ»Èô²»´æÔÚ£¬Ôò˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2000•ÉϺ££©ÒÑÖª¸´Êýz0=1-mi£¨m£¾0£©£¬z=x+yiºÍ£¬ÆäÖÐx£¬y£¬x'£¬y'¾ùΪʵÊý£¬iΪÐéÊýµ¥Î»£¬ÇÒ¶ÔÓÚÈÎÒ⸴Êýz£¬ÓÐw=
.
z0
.
z
£¬|w|=2|z|£®
£¨¢ñ£©ÊÔÇómµÄÖµ£¬²¢·Ö±ðд³öx'ºÍy'ÓÃx¡¢y±íʾµÄ¹Øϵʽ£º
£¨¢ò£©½«£¨x¡¢y£©ÓÃΪµãPµÄ×ø±ê£¬£¨x'¡¢y'£©×÷ΪµãQµÄ×ø±ê£¬ÉÏÊö¹Øϵʽ¿ÉÒÔ¿´×÷ÊÇ×ø±êƽÃæÉϵãµÄÒ»¸ö±ä»»£ºËü½«Æ½ÃæÉϵĵãP±äµ½ÕâһƽÃæÉϵĵãQ£®ÒÑÖªµãP¾­¸Ã±ä»»ºóµÃµ½µÄµãQµÄ×ø±êΪ(
3
£¬2)
£¬ÊÔÇóµãPµÄ×ø±ê£»
£¨¢ó£©ÈôÖ±Ïßy=kxÉϵÄÈÎÒ»µã¾­ÉÏÊö±ä»»ºóµÃµ½µÄµãÈÔÔÚ¸ÃÖ±ÏßÉÏ£¬ÊÔÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£ ÌâÐÍ£º½â´ðÌâ

ÒÑÖª¸´Êýz0=1-mi£¨m£¾0£©£¬z=x+yiºÍ£¬ÆäÖÐx£¬y£¬x'£¬y'¾ùΪʵÊý£¬iΪÐéÊýµ¥Î»£¬ÇÒ¶ÔÓÚÈÎÒ⸴Êýz£¬ÓÐw=
.
z0
.
z
£¬|w|=2|z|£®
£¨¢ñ£©ÊÔÇómµÄÖµ£¬²¢·Ö±ðд³öx'ºÍy'ÓÃx¡¢y±íʾµÄ¹Øϵʽ£º
£¨¢ò£©½«£¨x¡¢y£©ÓÃΪµãPµÄ×ø±ê£¬£¨x'¡¢y'£©×÷ΪµãQµÄ×ø±ê£¬ÉÏÊö¹Øϵʽ¿ÉÒÔ¿´×÷ÊÇ×ø±êƽÃæÉϵãµÄÒ»¸ö±ä»»£ºËü½«Æ½ÃæÉϵĵãP±äµ½ÕâһƽÃæÉϵĵãQ£®ÒÑÖªµãP¾­¸Ã±ä»»ºóµÃµ½µÄµãQµÄ×ø±êΪ(
3
£¬2)
£¬ÊÔÇóµãPµÄ×ø±ê£»
£¨¢ó£©ÈôÖ±Ïßy=kxÉϵÄÈÎÒ»µã¾­ÉÏÊö±ä»»ºóµÃµ½µÄµãÈÔÔÚ¸ÃÖ±ÏßÉÏ£¬ÊÔÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¸´Êýz0=1-mi(m£¾0),z=x+yi,w=x¡ä+y¡äi,ÆäÖÐx¡¢y¡¢x¡ä,y¡ä¾ùΪʵÊý£¬iΪÐéÊýµ¥Î»£¬ÇÒ¶ÔÓÚÈÎÒ⸴Êýz,ÓÐw=z0¡¤z,|w|=2|z|,ÇómµÄÖµ£¬²¢·Ö±ðд³öx¡ä£¬y¡äÓÃx¡¢y±íʾµÄ¹Øϵʽ.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸