精英家教网 > 高中数学 > 题目详情
20.若一扇形的圆心角为2,圆心角所对的弦长为2,则此扇形的面积为$\frac{1}{si{n}^{2}1}$.

分析 根据扇形的面积公式直接计算即可.

解答 解:∵弧度是2的圆心角所对的弦长为2,
∴半径OB=$\frac{1}{sin1}$.
∴扇形的面积公式S=$\frac{1}{2}×O{B}^{2}×2$=$\frac{1}{si{n}^{2}1}$,
故答案为:$\frac{1}{si{n}^{2}1}$.

点评 本题主要考查扇形的半径的求法、面积的求法,考查计算能力,注意扇形面积公式的应用.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2x-$\frac{1}{x}$-alnx(a∈R).
(1)当a=3时,求f(x)的单调区间;
(2)设g(x)=f(x)-x+2alnx,且g(x)有两个极值点x1,x2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.甲、乙、丙三人每人有一张游泳比赛的门票,已知每张票可以观看指定的三场比赛中的任一场(三场比赛时间不冲突),甲乙二人约定他们会观看同一场比赛并且他俩观看每场比赛的可能性相同,又已知丙观看每一场比赛的可能性也相同,且甲乙的选择与丙的选择互不影响.
(1)求三人观看同一场比赛的概率;
(2)记观看第一场比赛的人数是X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有甲、乙、丙、丁四位同学竞选班长,其中只有一位当选.有人走访了四位同学,甲说:“是乙或丙当选”,乙说:“甲,丙都未当选”,丙说:“我当选了”,丁说:“是乙当选了”,若四位同学的话只有两句是对的,则当选的同学是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$)的最高点D的坐标为($\frac{π}{8}$,2),由最高点D运动到相邻最低点时,函数图形与x的交点的坐标为($\frac{3π}{8}$,0);
(1)求函数f(x)的解析式.
(2)当x∈[-$\frac{π}{4}$,$\frac{π}{4}$]时,求函数f(x)的最大值和最小值以及分别取得最大值和最小值时相应的自变量x的值.
(3)将函数y=f(x)的图象向右平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,求函数y=g(x)的单调减区间及对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=f(x)(x∈R)的图象如图所示,则不等式x•f(x)<0的解集为(  )
A.$(-∞,\frac{1}{2})∪(\frac{1}{2},2)$B.(-1,0)∪(1,3)C.$(-∞,\frac{1}{2})∪(\frac{1}{2},+∞)$D.$(-∞,\frac{1}{2})∪(2,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数$f(x)=\left\{\begin{array}{l}ln(-x),(x<0)\\ tanx,(x≥0)\end{array}\right.$,则$f(f(\frac{3π}{4}))$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>0,则下列不等关系不恒成立的是(  )
A.若m>n,则$\frac{n+a}{m+a}$<$\frac{n}{m}$B.a+$\frac{9}{a+2}$≥4
C.a2+$\frac{1}{{a}^{2}}$≥a+$\frac{1}{a}$D.若函数f(x)=|1-x2|,则f(ax)-a2f(x)≤f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知F为双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,过原点的直线l与双曲线交于M,N两点,且$\overrightarrow{MF}•\overrightarrow{NF}$=0,△MNF的面积为ab.则该双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案