精英家教网 > 高中数学 > 题目详情
已知{an}是等差数列,a2=5,a5=14.
(I)求{an}的通项公式;
(II)设{an}的前n项和Sn=155,求n的值.
分析:(1)先求出两个基本量a1,d,再求出通项公式.
(2)由Sn的公式,求出n即可.
解答:(Ⅰ)解:设等差数列{an}的公差为d,
a1+d=5,
 a1+4d=14,

解得a1=2,d=3.
所以数列{an}的通项为an=a1+(n-1)d=3n-1.
(Ⅱ)解:数列{an}的前n项和Sn
n(a1+
a
 
n
)
2
=
3
2
n2+
1
2
n

3
2
n2+
1
2
n=155,
 化简得3n2+n-310=0,

即(3n+31)(n-10)=0;
∴n=10.
点评:等差数列里,已知两个基本量a1,d,可表示出其他的量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数{an}的前n项和,已知S6=36,Sn=324,若Sn-6=144(n>6),则n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知满足:
(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

同步练习册答案