精英家教网 > 高中数学 > 题目详情
13.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(15-x),x≤0}\\{f(x-2),x>0}\end{array}\right.$,则f(3)=4;f(f(2015))=log215.

分析 利用抽象函数求出周期,通过分段函数的解析式,化简所求表达式的自变量为 具体函数的定义域的值,然后求解即可.

解答 解:定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(15-x),x≤0}\\{f(x-2),x>0}\end{array}\right.$,
x>0时,函数的周期为:2.
所以f(3)=f(1)=f(-1)=log216=4.
f(f(2015))=f(f(-1))=f(4)=f(0)=log215.
故答案为:4;log215.

点评 本题考查抽象函数的应用,分段函数函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列命题中,不适合使用使用数学归纳法证明的是(  )
A.{an}是以q(q≠1)为公比的等比数列,则a1+a2+…+an=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$
B.若n∈N*,则cos$\frac{α}{2}$•cos$\frac{α}{{2}^{2}}$•cos$\frac{α}{{2}^{3}}$…cos$\frac{α}{{2}^{n}}$=$\frac{sinα}{{2}^{n}sin\frac{α}{{2}^{n}}}$
C.若n∈N*,则n2+3n+1是质数
D.(n2-1)+22(n2-22)+…+n2(n2-n2)=$\frac{{n}^{2}(n-1)(n+1)}{4}$对任何n∈N*都成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.计算2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$的值为(  )
A.$\sqrt{6}$B.$\root{2}{6}$C.6D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法中,正确的是(  )
A.$\frac{y-{y}_{1}}{x-{x}_{1}}$=k为过点P(x1,y1)且斜率为k的直线方程
B.过y轴上一点(0,b)得直线方程可以表示为y=kx+b
C.若直线在x轴、y轴的截距分别为a与b,则该直线方程为$\frac{x}{a}$+$\frac{y}{b}$=1
D.方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示过两点P(x1,y1)、Q(x2,y2)一条直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线l在x轴、y轴上的截距的绝对值相等,且过点P(2,3),则直线l的方程为3x-2y=0,x+y-5=0,x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等比数列{an}中,a2=$\frac{1}{3}$,公比q=$\frac{1}{3}$,Sn为{an}的前n项和.
(1)求an和Sn
(2)设bn=log3a1+log3a2+…+log3an,求数列bn的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.与双曲线3x2-y2=3的焦点相同且离心率互为倒数的椭圆方程为(  )
A.x2+$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}+{y}^{2}=1$C.$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{16}=1$D.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知全集U={x|x-2≥0或x-1≤0},A={x|x<1或x>3},B={x|x≤1或x>2},求A∩B,A∪B,(∁UA)∩(∁UB),(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a=30.2,b=0.2-3,c=(-3)0.2,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

同步练习册答案