精英家教网 > 高中数学 > 题目详情
在三角形ABC,已知=sinC,下列四个论断中正确的是( )
①tanA•cotB=1;   ②0<sinA+sinB≤;   ③sin2A+cos2B=1;   ④cos2A+cos2B=sin2C.
A.①③
B.②④
C.①④
D.②③
【答案】分析:先利用同角三角函数的基本关系和二倍角公式化简整理题设等式求得cos=进而求得A+B=90°进而求得①tanA•cotB=tanA•tanA等式不一定成立,排除;②利用两角和公式化简,利用正弦函数的性质求得其范围符合,②正确;
③sin2A+cos2B=2sin2A不一定等于1,排除③;④利用同角三角函数的基本关系可知cos2A+cos2B=cos2A+sin2A=1,进而根据C=90°可知sinC=1,进而可知二者相等.④正确
解答:解:∵tan=sinC
=2sincos
整理求得cos=
∴A+B=90°.
∴tanA•cotB=tanA•tanA不一定等于1,①不正确.
∴sinA+sinB=sinA+cosA
=sin(A+45°)
45°<A+45°<135°,
<sin(A+45°)≤1,
∴1<sinA+sinB≤
所以②正确
sin2A+cos2B=sin2A+sin2A=2sin2A≠1,③不正确.
cos2A+cos2B=cos2A+sin2A=1,
sin2C=sin290°=1,
所以cos2A+cos2B=sin2C.
所以④正确.
故选B.
点评:本题主要考查了三角函数的化简求值.考查了学生综合分析问题和推理的能力,基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三角形ABC,已知tan
A+B
2
=sinC,下列四个论断中正确的是(  )
①tanA•cotB=1;   ②0<sinA+sinB≤
2
;   ③sin2A+cos2B=1;   ④cos2A+cos2B=sin2C.

查看答案和解析>>

科目:高中数学 来源:2010年海南省高一下学期期末考试(理科)数学卷 题型:选择题

在三角形ABC中,已知A,b=1,其面积为,则为  (    )

A.          B.         C.           D.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三角形ABC,已知tan
A+B
2
=sinC,下列四个论断中正确的是(  )
①tanA•cotB=1;   ②0<sinA+sinB≤
2
;   ③sin2A+cos2B=1;   ④cos2A+cos2B=sin2C.
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,已知A, b=1,其面积为, 则=________.

查看答案和解析>>

同步练习册答案