精英家教网 > 高中数学 > 题目详情
(2011•西城区二模)函数y=sinπx(x∈R)的部分图象如图所示,设O为坐标原点,P是图象的最高点,B是图象与x轴的交点,则tan∠OPB=(  )
分析:△OPB中,OB=
π
=2,点 P(
1
2
,1),点B(2,0),由余弦定理求出cos∠OPB=
65
65
,再利用同角三角函数的基本关系求出sin∠OPB=
8
65
65
,从而求得 tan∠OPB 的值.
解答:解:△OPB中,OB=
π
=2,点 P(
1
2
,1),点B(2,0),
∴OP=
1
4
+1
=
5
2
,PB=
(2-
1
2
)
2
+(0-1)2
=
13
2
,由余弦定理可得
4=
5
4
+
13
4
-2×
5
2
×
13
2
cos∠OPB,
∴cos∠OPB=
65
65

∴sin∠OPB=
8
65
65
,tan∠OPB=
8
65
65
65
65
=8,
故选 B.
点评:本题主要考查余弦定理的应用,同角三角函数的基本关系,正弦函数的周期性及求法,求出cos∠OPB=
65
65
,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•西城区二模)如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=3
2

(Ⅰ)求证:OM∥平面ABD;
(Ⅱ)求证:平面ABC⊥平面MDO;
(Ⅲ)求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区二模)已知函数f(x)=(1-
ax
)ex(x>0)
,其中e为自然对数的底数.
(Ⅰ)当a=2时,求曲线y=f(x)在(1,f(1))处的切线与坐标轴围成的面积;
(Ⅱ)若函数f(x)存在一个极大值点和一个极小值点,且极大值与极小值的积为e5,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区二模)已知函数f(x)=
cos2x
sin(x+
π
4
)

(Ⅰ)求函数f(x)的定义域;
(Ⅱ)若f(x)=
4
3
,求sin2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区二模)已知函数f(x)=
2
sin(x+
π
4
)-
1
3
sinx

(Ⅰ)求函数f(x)的定义域;
(Ⅱ)若f(x)=2,求sin2x的值.

查看答案和解析>>

同步练习册答案