精英家教网 > 高中数学 > 题目详情

已知函数.
(1)证明:
(2)当时,,求的取值范围.

(1)证明过程详见解析;(2).

解析试题分析:本题考查导数的运算以及利用导数研究函数的单调性、最值等基础知识,考查综合分析问题解决问题的能力、转化能力和计算能力.第一问,因为,所求证,所以只需分母即可,设函数,对求导,判断函数的单调性,求出最小值,证明最小值大于0即可,所求证的不等式的右边,需证明函数的最大值为1即可,对求导,判断单调性求最大值;第二问,结合第一问的结论,讨论的正负,当时,,而矛盾,当时,当时,矛盾,当时,分母去分母,等价于,设出新函数,需要讨论的情况,判断在每种情况下,是否大于0,综合上述所有情况,写出符合题意的的取值范围.
试题解析:(Ⅰ)设,则
时,单调递减;
时,单调递增.
所以
,故.           2分

时,单调递增;
时,单调递减.
所以
综上,有.           5分
(Ⅱ)(1)若,则时,,不等式不成立.  6分
(2)若,则当时,,不等式不成立.  7分
(3)若,则等价于.  ①
,则
,则当单调递增,. 9分
,则当单调递减,
于是,若,不等式①成立当且仅当

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

经调查统计,某种型号的汽车在匀速行驶中,每小时的耗油量(升)关于行驶速度(千米/时)的函数可表示为.已知甲、乙两地相距千米,在匀速行驶速度不超过千米/时的条件下,该种型号的汽车从甲地 到乙地的耗油量记为(升).
(Ⅰ)求函数的解析式;
(Ⅱ)讨论函数的单调性,当为多少时,耗油量为最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的极值点;
(2)对任意的,记上的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于的函数
(Ⅰ)当时,求函数的极值;
(Ⅱ)若函数没有零点,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)讨论的单调性;
(Ⅱ)若在(1,+)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中).
(Ⅰ)若的极值点,求的值;
(Ⅱ)在(Ⅰ)的条件下,解不等式
(Ⅲ)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)己知函数
(1)试探究函数的零点个数;
(2)若的图象与轴交于两点,中点为,设函数的导函数为, 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.若函数依次在处取到极值.
(1)求的取值范围;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导函数是处取得极值,且
(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;
(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断的大小关系,并说明理由.

查看答案和解析>>

同步练习册答案