精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求的极值点;
(2)对任意的,记上的最小值为,求的最小值.

(1)是极大值点,是极小值点;(2).

解析试题分析:(1)利用导数求出函数的两个极值点,并结合导数符号确定相应的极大值点与极小值点;(2)在(1)的基础上,对与极小值的大小作分类讨论,结合图象确定的表达式,然后再根据的表达式确定相应的最小值.
试题解析:(1)
解得:
时,
时,
所以,有两个极值点:
是极大值点,
是极小值点,
(2)过点作直线,与的图象的另一个交点为
,即
已知有解,则
解得
时,
时,
其中当时,
时,
所以,对任意的的最小值为(其中当时,).
考点:1.利用导数求函数的极值;2.分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x∈(1,+∞).
(1)求函数f(x)的单调区间;
(2)函数f(x)在区间[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若上是增函数,求实数a的取值范围;
(Ⅱ)证明:当a≥1时,证明不等式≤x+1对x∈R恒成立;
(Ⅲ)对于在(0,1)中的任一个常数a,试探究是否存在x0>0,使得>x0+1成立?如果存在,请求出符合条件的一个x0;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数,.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,试确定函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中,且.
⑴当时,求函数的最大值;
⑵求函数的单调区间;
⑶设函数若对任意给定的非零实数,存在非零实数),使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(Ⅰ)若,求的值,并求此时曲线在点处的切线方程;
(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若曲线在x=l和x=3处的切线互相平行,求a的值及函数的单调区间;
(2)设,若对任意,均存在,使得,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)证明:
(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(I)函数在区间上是增函数还是减函数?证明你的结论;
(II)当时,恒成立,求整数的最大值;
(Ⅲ)试证明: 

查看答案和解析>>

同步练习册答案