精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
3
+
y2
2
=1
与直线l:mx-y-m=0
(1)求证:对于m∈R,直线l与椭圆C总有两个不同的交点;
(2)设直线l与椭圆C交于A、B两点,若|AB|=
16
11
3
,求直线l的倾斜角.
分析:(1)分m=0和m≠0两种情况分别判断直线和椭圆C的位置关系即可.m≠0时,联立直线方程与椭圆方程根据判别式和0的关系即可得到结论.
(2)联立直线方程与椭圆方程,再结合韦达定理以及弦长公式即可解决问题.
解答:解:(1)证明:1、当m=0,直线方程y=1,与圆有两个交点,符合题意
2、当m≠0,将椭圆C:
x2
3
+
y2
2
=1
与直线l:mx-y-m=0联立得
(3m2+2)x2-6m2x+3m2-6=0
△=(6m22-4(3m2+2)×(3m2-6)=48m2+48>0,符合题意
∴对于m∈R,直线l与椭圆C总有两个不同的交点
(2)设A、B的坐标分别为(x1,y1)、(x2,y2),
则x1+x2=
6m2
3m2+2
x1•x2=
3m2-6
3m2+2
|AB|=
1+k2
|x1-x2|

=
1+k2
(x1+x2)2-4x1x2

=
1+m2
36m4
(3m2+2)2
-
12m2-24
3m2+2
=
16
3
11

解得m=±
3
∴l的倾斜角为
π
3
3
点评:解决此类问题的关键是熟练掌握椭圆有关数值之间的关系,以及椭圆与直线的位置关系并且结合韦达定理解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系xOy中,已知椭圆C:
x23
+y2=1
.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形,则椭圆方程(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C以双曲线
x23
-y2=1
的焦点为顶点,以双曲线的顶点为焦点.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于点M,N两点(M,N不是左右顶点),且以线段MN为直径的圆过椭圆C左顶点A,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
3
+
y2
2
=1
与直线l:mx-y-m=0
(1)求证:对于m∈R,直线l与椭圆C总有两个不同的交点;
(2)设直线l与椭圆C交于A、B两点,若|AB|=
16
11
3
,求直线l的倾斜角.

查看答案和解析>>

同步练习册答案