精英家教网 > 高中数学 > 题目详情

过正四棱柱的底面ABCD中顶点A,作与底面成30°角的截面AB1C1D1,截得的多面体如图,已知AB=1,B1B=D1D,则这个多面体的体积为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:作D1E∥DC,连接B1D1,B1E,BD,则几何体被分割成两个棱锥与一个棱柱,分别求出两个棱锥与一个棱柱的体积,即可得多面体的体积
解答:作D1E∥DC,连接B1D1,B1E,BD,则几何体被分割成两个棱锥与一个棱柱,如图:
∵截面AB1C1D1与底面成30°的二面角,∴∠CAC1=30°,
∵AB=1,∴AC=,CC1=ACtan30°=×=
∵截面AB1C1D1为平行四边形,∴AC1与B1D1的交点为AC1的中点
∴B1B=D1D=CC1=



∴多面体的体积为++=
故选 C
点评:本题以多面体为载体,考查几何体的体积,关键是将几何体进行分割,利用规则几何体的体积公式求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科做)如右图,多面体是过正四棱柱的底面正方形ABCD的顶点A作截面AB1C1D1而截得的,且BB1=DD1,已知截面AB1C1D1与底面成30°的二面角,AB=1,则这个多面体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北海一模)过正四棱柱的底面ABCD中顶点A,作与底面成30°角的截面AB1C1D1,截得的多面体如图,已知AB=1,B1B=D1D,则这个多面体的体积为(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省分校高二12月月考理科数学试卷(解析版) 题型:选择题

图中多面体是过正四棱柱的底面正方形ABCD的顶点A作截面AB1C1D1而截得的,且B1B=D1D。已知截面AB1C1D1与底面ABCD成30度的二面角,AB=1,则这个多面体的体积为(    )

A.        B.        C.           D.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省肇庆市高三数学复习必修2模块测试试卷D卷 题型:选择题

图8-23中多面体是过正四棱柱的底面正方形ABCD的顶点A作截面AB1C1D1而截得的,且B1B=D1D。已知截面AB1C1D1与底面ABCD成30°的二面角,AB=1,则这个多面体的体积为(    )

 

 

A.

B.

C.    

D.

 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(理科做)如右图,多面体是过正四棱柱的底面正方形ABCD的顶点A作截面AB1C1D1而截得的,且BB1=DD1,已知截面AB1C1D1与底面成30°的二面角,AB=1,则这个多面体的体积为(  )
A.
6
2
B.
6
3
C.
6
4
D.
6
6
精英家教网

查看答案和解析>>

同步练习册答案