精英家教网 > 高中数学 > 题目详情
4.不等式(x-2)(3-x)>0的解集是(  )
A.(-∞,2)B.(3,+∞)C.(2,3)D.(-∞,2)∪(3,+∞)

分析 直接利用二次不等式求解即可.

解答 解:不等式(x-2)(3-x)>0,对应的二次方程为:(x-2)(3-x)=0的解为:x=2,x=3,
不等式(x-2)(3-x)>0的解集是:(2,3).
故选:C.

点评 本题考查二次不等式的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知等比数列{an}的首项为a1,公比为q,前n项和为Sn,记数列{log2an}的前n项和为Tn,若a1∈[$\frac{1}{2016}$,$\frac{1}{1949}$],且$\frac{{S}_{6}}{{S}_{3}}$=9,则当n=11时,Tn有最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=(a2-3a+3)ax是指数函数,则当x∈[-1,2]时,此函数的值域是(  )
A.[-2,4]B.[$\frac{1}{2}$,4]C.[-2,0)D.(-2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若loga$\frac{3}{5}$<1,则a的取值范围是(  )
A.0<a<$\frac{3}{5}$B.a>$\frac{3}{5}$且a≠1C.$\frac{3}{5}$<a<1D.0<a<$\frac{3}{5}$或a>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow a=({2,-1}),\overrightarrow b=({-1,m}),\overrightarrow c=({1,-2})$,若$({\overrightarrow a+\overrightarrow b})∥\overrightarrow c$,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若a2-a>x+$\frac{4}{x}$+6(x<0)恒成立,则实数a的取值范围是(-∞,-1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合A={a|关于x的方程$\frac{x+a}{{{x^2}-1}}=1$有唯一实数解,a∈R},用列举法表示集合A=$\left\{{-1,1,-\frac{5}{4}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若$\frac{1}{a}<\frac{1}{b}<0$,有下面四个不等式:①|a|>|b|;②a<b;③a+b<ab,④a3>b3,正确的不等式的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的值域:
①y=sin(3x+$\frac{π}{6}$)(-$\frac{π}{6}≤x≤\frac{π}{6}$);
②y=2sin(2x+$\frac{π}{6}$),x$∈[-\frac{π}{6},\frac{π}{3}]$;
③y=sin($\frac{π}{4}-2x$)($-\frac{π}{4}≤x≤\frac{π}{4}$)

查看答案和解析>>

同步练习册答案