精英家教网 > 高中数学 > 题目详情
9.若a2-a>x+$\frac{4}{x}$+6(x<0)恒成立,则实数a的取值范围是(-∞,-1)∪(2,+∞).

分析 不等式整理为a2-a-6>x+$\frac{4}{x}$(x<0)恒成立,构造函数g(x)=x+$\frac{4}{x}$,只需求出函数g(x)的最大值即可,利用均值定理可求出结果.

解答 解:a2-a>x+$\frac{4}{x}$+6(x<0)恒成立,
∴a2-a-6>x+$\frac{4}{x}$(x<0)恒成立,
令g(x)=x+$\frac{4}{x}$=-(-x+$\frac{4}{-x}$)≤-4,
∴a2-a-6>-4,
∴a>2或a<-1.
故a的范围为(-∞,-1)∪(2,+∞).

点评 考查了恒成立问题的转换和均值定理的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知Sn是等差数列{an}的前n项和,若a7=9a3,则$\frac{{S}_{9}}{{S}_{5}}$=(  )
A.9B.5C.$\frac{18}{5}$D.$\frac{9}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x+l)的定义域为(1,+∞),则f(1-x)的定义域为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:
(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;
若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式(x-2)(3-x)>0的解集是(  )
A.(-∞,2)B.(3,+∞)C.(2,3)D.(-∞,2)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\frac{x^2}{{{x^2}-9}}$,g(x)=x-3,$h(x)=\frac{3x}{x+3}$,则f(x)g(x)+h(x)=x(x≠±3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果a<b,那么下列不等式一定成立的是(  )
A.c-a<c-bB.-2a>-2bC.a+c>b+cD.a+d>b+c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设A(-1,0),B(1,4),动点P满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,求:
(1)动点P的轨迹方程;
(2)若点Q是关于直线P关于直线y=x-4的对称点,求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.有一块三角形边角地,如图中△ABC,其中AB=8(百米),AC=6(百米),∠A=60°,某市为迎接2500年城庆,欲利用这块地修一个三角形形状的草坪(图中△AEF)供市民休闲,其中点E在边AB上,点F在边AC上,规划部门要求△AEF的面积占△ABC面积的一半,记△AEF的周长为l(百米).
(1)如果要对草坪进行灌溉,需沿△AEF的三边安装水管,求水管总长度l的最小值;
(2)如果沿△AEF的三边修建休闲长廊,求长廊总长度l的最大值,并确定此时E、F的位置.

查看答案和解析>>

同步练习册答案