精英家教网 > 高中数学 > 题目详情
已知函数
(1)求f(f(3))的值;
(2)判断函数在(1,+∞)上单调性,并用定义加以证明.
(3)当x取什么值时,的图象在x轴上方?
【答案】分析:(1)运用函数解析式,代入计算,即可求得结论;
(2)函数在(1,+∞)上单调递减,再运用定义法进行证明;
(3)转化为具体不等式,即可求得结论.
解答:解:(1)由题意,f(3)=,∴…(2分)
(2)函数在(1,+∞)上单调递减…(3分)
证明:设x1,x2是(1,+∞)上的任意两个实数,且x1<x2,则△x=x1-x2<0…(6分)
由x1,x2∈(1,+∞),得(x1-1)(x2-1)>0,且x2-x1=△x>0
于是△y>0
所以,在(1,+∞)上是减函数…(8分)
(3)得x>1或x<0…(10分)
点评:本题考查函数的单调性,考查解不等式,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年浙江省杭州市富阳市场口中学高三(上)8月月考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最大值及取得最大值时的x集合;
(2)设△ABC的角A,B,C的对边分别为a,b,c,且a=1,f(A)=0.求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省常州高级中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期和值域;
(2)若x=x为f(x)的一个零点,求sin2x的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省莆田市仙游一中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期;
(2)求f(x)的单调递减区间;
(3)函数f(x)的图象经过怎样的平移才能使其对应的函数成为奇函数?

查看答案和解析>>

科目:高中数学 来源:2011年江苏省连云港市赣榆高级中学高三3月调研数学试卷(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期及对称中心;
(2)若,求f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案