精英家教网 > 高中数学 > 题目详情
若函数
(Ⅰ)在给定的平面直角坐标系中画出函数a>3图象;
(Ⅱ)利用图象写出函数f(x)的值域、单调区间.
【答案】分析:(Ⅰ)根据函数的解析式,分段做出函数的图象,即可得答案;
(Ⅱ)由(Ⅰ)中函数的图象,结合函数值域、单调性的意义,可得答案.
解答:解:(Ⅰ)函数中,
当x>0时,函数解析式是y=2x,为指数函数,
当x≤0时,函数解析式是y=-x2-2x-2,为开口向下的二次函数,其对称轴为x=-1,
函数图象如图所示;
(Ⅱ)由图象可得函数的值域为(-∞,-1]∪(1,+∞),
函数图象在(-∞,-1]和(0,+∞)逐渐上升,则其单调递增区间为(-∞,-1]和(0,+∞),
函数图象在[-1,0]上逐渐下降,单调递减区间为[-1,0].
点评:本题考查分段函数的图象的画法与应用,分段函数的问题一般要分段讨论,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•成都模拟)若函数f(x)在给定区间M上,存在正数t,使得对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上的t级类增函数,则以下命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若函数f(x)在给定区间M上,存在正数t,使得对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上的t级类增函数,则以下命题正确的是


  1. A.
    函数数学公式上的1级类增函数
  2. B.
    函数f(x)=|log2(x-1)|是(1,+∞)上的1级类增函数
  3. C.
    若函数数学公式上的数学公式级类增函数,则实数a的最小值为2
  4. D.
    若函数f(x)=x2-3x为[1,+∞)上的t级类增函数,则实数t的取值范围为[1,+∞)

查看答案和解析>>

科目:高中数学 来源:成都模拟 题型:单选题

若函数f(x)在给定区间M上,存在正数t,使得对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上的t级类增函数,则以下命题正确的是(  )
A.函数f(x)=
4
x
+x是(1,+∞)
上的1级类增函数
B.函数f(x)=|log2(x-1)|是(1,+∞)上的1级类增函数
C.若函数f(x)=sinx+ax为[
π
2
,+∞)
上的
π
3
级类增函数,则实数a的最小值为2
D.若函数f(x)=x2-3x为[1,+∞)上的t级类增函数,则实数t的取值范围为[1,+∞)

查看答案和解析>>

科目:高中数学 来源:2013年四川省成都市高三12月一诊试卷(理科)(解析版) 题型:选择题

若函数f(x)在给定区间M上,存在正数t,使得对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上的t级类增函数,则以下命题正确的是( )
A.函数上的1级类增函数
B.函数f(x)=|log2(x-1)|是(1,+∞)上的1级类增函数
C.若函数上的级类增函数,则实数a的最小值为2
D.若函数f(x)=x2-3x为[1,+∞)上的t级类增函数,则实数t的取值范围为[1,+∞)

查看答案和解析>>

科目:高中数学 来源:2012年福建省宁德市高三毕业班质量检查数学试卷(理科)(解析版) 题型:选择题

若函数f(x)在给定区间M上,存在正数t,使得对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上的t级类增函数,则以下命题正确的是( )
A.函数上的1级类增函数
B.函数f(x)=|log2(x-1)|是(1,+∞)上的1级类增函数
C.若函数上的级类增函数,则实数a的最小值为2
D.若函数f(x)=x2-3x为[1,+∞)上的t级类增函数,则实数t的取值范围为[1,+∞)

查看答案和解析>>

同步练习册答案