精英家教网 > 高中数学 > 题目详情
(2013•成都模拟)若函数f(x)在给定区间M上,存在正数t,使得对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上的t级类增函数,则以下命题正确的是(  )
分析:在A中,f(x+1)-f(x)=
4
x+1
+x+1-
4
x
-x
=
4
x+1
-
4
x
+1
≥0在(1,+∞)上不成立;在B中,f(x+1)-f(x)=|log2x|-|log2(x-1)|≥0在(1,+∞)上不成立;在C中,函数f(x)=sinx+ax为[
π
2
,+∞)上的
π
3
级类增函数,故
3
2
cosx
+
π
3
a
1
2
sinx,所以实数a的最小值不为2;在D中,由f(x)=x2-3x为[1,+∞)上的t级类增函数,能导出实数t的取值范围为[1,+∞).
解答:解:∵f(x)=
4
x
+x

∴f(x+1)-f(x)=
4
x+1
+x+1-
4
x
-x

=
4
x+1
-
4
x
+1
≥0在(1,+∞)上不成立,
故A不正确;
∵f(x)=|log2(x-1)|,
∴f(x+1)-f(x)=|log2x|-|log2(x-1)|≥0在(1,+∞)上不成立,
故B不正确;
∵函数f(x)=sinx+ax为[
π
2
,+∞)上的
π
3
级类增函数,
∴sin(x+
π
3
)+a(x+
π
3
)≥sinx+ax,
∴sinxcos
π
3
+cosxsin
π
3
+ax+
π
3
a≥sinx+ax,
3
2
cosx
+
π
3
a
1
2
sinx,
当x=
π
2
时,
π
3
a
1
2
,a≥
3

∴实数a的最小值不为2,故C不正确;
∵f(x)=x2-3x为[1,+∞)上的t级类增函数,
∴(x+t)2-3(x+t)≥x2-3x,
∴2tx+t2-3t≥0,
t≥3-2x∈[1,+∞),
故D成立.
故选D.
点评:本题考查命题的真假判断,是中档题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•成都模拟)函数f(x)的定义域为D,若存在闭区间[m,n]⊆D,使得函数f(x)满足:①f(x)在[m,n]上是单调函数;②f(x)在[m,n]上的值域为[2m,2n],则称区间[m,n]为y=f(x)的“倍值区间”.下列函数中存在“倍值区间”的有
①③④
①③④
(填上所有正确的序号)
①f(x)=x2(x≥0);②f(x)=ex(x∈R);③f(x)=
4x
x2+1
(x≥0)
;④f(x)=loga(ax-
1
8
)(a>0,a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都模拟)某大学对1000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图),则这1000名学生在该次自主招生水平测试中不低于70分的学生数是
600
600

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都模拟)已知向量
.
m
=(
3
sin
x
4
,1),
.
n
=(cos
x
4
,cos2
x
4
),f(x)=
.
m
.
n

(1)若f(x)=1,求cos(x+
π
3
)的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足acosC+
1
2
c=b,求函数f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都模拟)若实数x,y满足条件
x+y≥0
x-y+3≥0
0≤x≤3
,则z=2x-y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都模拟)设函数f(x)=
-x,x≤0
x2,x>0
,若f(α)=4,则实数α为
-4或2
-4或2

查看答案和解析>>

同步练习册答案