精英家教网 > 高中数学 > 题目详情

在平面斜坐标系xOy中,z:xOy=120°,平面上任一点M关于斜坐标系的斜坐标是这样定义的:(其中e1、e2分别为与x轴、y轴同方向的单位向量),则P点斜坐标为(x,y).那么以O为圆心,2为半径的圆在斜坐标系xOy少中的方程为

[  ]

A.x2+y2+xy=4

B.x2+y2=4

C.x2+y2-xy=4

D.以上都不是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

我们把平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度相同)称为斜坐标系.平面上任意一点P的斜坐标定义为:若
OP
=x
e1
+y
e2
(其中
e1
e2
分别为斜坐标系的x轴、y轴正方向上的单位向量,x、y∈R),则点P的斜坐标为(x,y).在平面斜坐标系xoy中,若∠xoy=60°,已知点M的斜坐标为(1,2),则点M到原点O的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平面斜坐标系xoy中,∠xoy=60°,平面上任一点P关于斜坐标系的斜坐标这样定义的,若
OP
=xe1+ye2(其中e1,e2分别是与x轴y轴同方向的单位向量),则P点的斜坐标为(x,y),则以O为圆心,1为半径的圆在斜坐标系下的方程为(  )
A、x2+y2=1
B、x2+y2+xy=1
C、x2+y2-xy=1
D、x2+y2+2xy=1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平面斜坐标系xOy中,∠xOy=60°,平面上任一点P关于斜坐标系的斜坐标是这样定义的:
OP
=xe1+ye2(其中e1、e2分别为与x轴、y轴同方向的单位向量),则P点斜坐标为(x,y).
(1)若P点斜坐标为(2,-2),求P到O的距离|PO|;
(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度相同)称为平面斜坐标系;在平面斜坐标系xOy中,若
OP
=x
e1
+y
e2
(其中
e1
e2
分别是斜坐标系x轴、y轴正方向上的单位向量,x、y∈R,O为坐标原点),则有序实数对(x,y)称为点P的斜坐标.在平面斜坐标系xOy中,若∠xOy=120°,点A(1,0),P为单位圆上一点,且∠AOP=θ,点P在平面斜坐标系中的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

平面上当两坐标轴不垂直时,称为斜坐标系.斜坐标定义为:若
OP
=x0
i
+y0
j
(其中
i
j
分别是斜坐标系的x轴,y轴的单位向量),则称点P的坐标为(x0,y0).在平面斜坐标系∠xoy=60°中,两点A(1,2),B(3,4)的距离为(  )

查看答案和解析>>

同步练习册答案