精英家教网 > 高中数学 > 题目详情

(本题满分13分)如图,在直角坐标系中,O为坐标原点,直线轴于点 动点到直线的距离是它到点的距离的2倍.

(I)求点的轨迹方程;

(II)设点为点的轨迹与轴正半轴的交点,直线交点的轨迹于两点(与点不重合),且满足,动点满足,求直线的斜率的取值范围.

 

【答案】

(I)

(II)

【解析】(1)先求出点D(-1,0),设点M(),根据动点到直线的距离是它到点的距离的2倍,建立关于x,y的方程,然后化简整理可得所求动点M的轨迹方程.

(2)按斜率存在和斜率不存在两种情况进行讨论.当直线EF的斜率不存在时,O、P、K三点共线,直线PK的斜率为0.然后再设EF的方程它与椭圆方程联立消y后得关于x的一元二次方程,然后根据,K点坐标为(2,0)

可得,再借助直线方程和韦达定理建立m,b的方程,从而用m表示b,再代入直线方程可求出定点坐标.然后把KP的斜率表示成关于m的函数,利用函数的方法求其范围.

(1)依题意知,点C(-4,0),由 得点D(-1,0)

设点M(),则:

整理得:

动点M的轨迹方程为

(2)当直线EF的斜率不存在时,由已知条件可知,O、P、K三点共线,直线PK的斜率为0.

当直线EF的斜率存在时,可设直线EF的方程为代入 ,整理

 

,K点坐标为(2,0)

,代入整理得

解得:

时,直线EF的方程为恒过点,与已知矛盾,舍去.

时,

,由 知

直线KP的斜率为

时,直线KP的斜率为0, 符合题意

时,

时取“=”)或≤-时取“=”)

综合以上得直线KP斜率的取值范围是.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届福建省高二上学期期中考试理科数学试卷(解析版) 题型:解答题

(本题满分13分) 如图,某观测站在城的南偏西的方向上,由城出发有一公路,走向是南偏东,在处测得距为31公里的公路上处,有一人正沿公路向城走去,走了20公里后,到达处,此时间距离为公里,问此人还需要走多少公里到达城.

 

查看答案和解析>>

科目:高中数学 来源:2014届福建省高二上学期期中考试理科数学试卷(解析版) 题型:解答题

(本题满分13分)如图,在平行六面体中,的中点,设

(1)用表示

(2)求的长.

 

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修二空间点、直线、平面之间的位置关系练习卷(一) 题型:解答题

(本题满分13分)如图所示,在矩形ABCD中,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′—EC—B是直二面角.

(1)证明:BE⊥C D′;

(2)求二面角D′—BC—E的正切值.

 

查看答案和解析>>

科目:高中数学 来源:2013届湖北省武汉市高二下期末理科数学试卷(解析版) 题型:解答题

(本题满分13分)如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BCAD, ABAD, ,OAD中点.

(1)求直线与平面所成角的余弦值;

(2)求点到平面的距离

(3)线段上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本题满分13分)

如图,在三棱柱中,已知侧面

(1)求直线C1B与底面ABC所成角的正弦值;

(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).

(3)在(2)的条件下,若,求二面角的大小.

 

查看答案和解析>>

同步练习册答案