精英家教网 > 高中数学 > 题目详情

已知空间四边形ABCD中,M、G分别为BC、CD的中点,则数学公式+数学公式数学公式)等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式数学公式
A
分析:由向量加法的平行四边形法则可知G是CD的中点,所以可得=),从而可以计算化简计算得出结果.
解答:解:如图所示:因为G是CD的中点,
所以)=
从而+)=+=
故选A.
点评:本题考查向量的加法运算,以及向量加法的三角形法则和平行四边形法则.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
求证:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G为△ADC的重心,试在线段AE上确定一点F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
求证:(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点,求证:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G为△ADC的重心,试在线段AE上确定一点F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省高三12月月考文科数学卷 题型:解答题

(本小题满分12分)

如图,已知空间四边形ABCD中,BC=AC, AD=BD,E是AB的中点,

求证:

AB⊥平面CDE;

平面CDE⊥平面ABC;

若G为△ADC的重心,试在线段AB上确定一点F,使得GF∥平面CDE.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
求证:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G为△ADC的重心,试在线段AE上确定一点F,使得GF平面CDE.
精英家教网

查看答案和解析>>

同步练习册答案