精英家教网 > 高中数学 > 题目详情
对于大于1的自然数m的三次幂可用奇数进行以下方式的“分裂”23=3+5,33=7+9+11,43=13+15+17+19,…,仿此,若m3的“分裂数”中有一个是59,则m的值为(  )
分析:由题意知,n的三次方就是n个连续奇数相加,且从2开始,这些三次方的分解正好是从奇数3开始连续出现,由此规律即可找出m3的“分裂数”中有一个是59时,m的值.
解答:解:由题意,从23到m3,正好用去从3开始的连续奇数共2+3+4+…+m=
(m+2)(m-1)
2
个,
59是从3开始的第29个奇数
当m=7时,从23到73,用去从3开始的连续奇数共
(7+2)(7-1)
2
=27个
当m=8时,从23到83,用去从3开始的连续奇数共
(8+2)(8-1)
2
=35个
故m=8
故选C
点评:本题考查归纳推理,求解的关键是根据归纳推理的原理归纳出结论,其中分析出分解式中项数及每个式子中各数据之间的变化规律是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于大于1的自然数m的三次可幂可用奇数进行以下方式的“分裂”:23=3+5,33=7+9+11,43=13+15+17+19,…,仿此,若m3的“分裂数”中有一个是31,则m的值为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,对于大于1的自然数m的n次幂可用奇数进行如图所示的“分裂”,仿此,记53的“分裂”中的最小数为a,而52的“分裂”中最大的数是b,则a+b=
30
30

查看答案和解析>>

科目:高中数学 来源: 题型:

对于大于1的自然数m的n次幂可用奇数进行如图所示的“分裂”,仿此,记53的“分裂”中的最小数为a,而52的“分裂”中最大的数是b,则a+b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,对于大于1的自然数m的n次幂可用奇数进行如图所示的“分裂”,仿此,记53的“分裂”中的最小数为a,而52的“分裂”中最大的数是b,则a+b=
30
30

查看答案和解析>>

同步练习册答案