精英家教网 > 高中数学 > 题目详情
已知a>0,函数f(x)=-2asin(2x+
π
6
)+2a+b
,当x∈[0,
π
2
]
时,-2≤f(x)≤1.
(1)求常数a,b的值;
(2)设g(x)=f(x+
π
2
)
,求g(x)的单调递减区间.
分析:(1)由x∈[0,
π
2
]⇒2x+
π
6
∈[
π
6
6
],利用正弦函数的单调性可求f(x)=-2asin(2x+
π
6
)+2a+b的最值,利用-2≤f(x)≤1即可求得常数a,b的值;
(2)由(1)知,f(x)=-2sin(2x+
π
6
),于是g(x)=f(x+
π
2
)=2sin(2x+
π
6
),利用正弦函数的单调性即可求得答案.
解答:解:(1)∵x∈[0,
π
2
],
∴2x+
π
6
∈[
π
6
6
],
∴-
1
2
≤sin(2x+
π
6
)≤1,又a>0,
∴-2a≤-2asin(2x+
π
6
)≤a,b≤-2asin(2x+
π
6
)+2a+b≤3a+b,
∵-2≤f(x)≤1,
∴b=-2,3a+b=1,解得a=1.
∴a=1,b=-2.
∴f(x)=-2sin(2x+
π
6
).
(2)∵g(x)=f(x+
π
2
)=-2sin(2x+π+
π
6
)=2sin(2x+
π
6
),
∴由2kπ+
π
2
≤2x+
π
6
≤2kπ+
2
,k∈Z得:
kπ+
π
6
≤x≤kπ+
3
,k∈Z.
∴g(x)的单调递减区间为[kπ+
π
6
,kπ+
3
]k∈Z.
点评:本题考查正弦函数的单调性,考查正弦函数的定义域与值域,考查方程思想与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(  )
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ln(2-x)+ax.
(1)求函数f(x)的单调区间;(2)设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ln(2-x)+ax.
(1)设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆(x+1)2+y2=1相切,求a的值;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=lnx-ax2,x>0.(f(x)的图象连续不断)
(Ⅰ)当a=
1
8

①求f(x)的单调区间;
②证明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均属于区间[1,3]的α,β,且β-α≥1,使f(α)=f(β),证明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=
|x-2a|
x+2a
在区间[1,4]上的最大值等于
1
2
,则a的值为
 

查看答案和解析>>

同步练习册答案