精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x2+$\frac{a}{x}$(x≠0,a∈R).
(1)判断函数f(x)的奇偶性;
(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.

分析 (1)根据偶函数、奇函数的定义,便容易看出a=0时,f(x)为偶函数,a≠0时,f(x)便非奇非偶;
(2)根据题意便有f′(x)=$2x-\frac{a}{{x}^{2}}≥0$在[2,+∞)上恒成立,这样便可得到a≤2x3恒成立,由于2x3为增函数,从而可以得出a≤16,这便可得到实数a的取值范围.

解答 解:(1)①当a=0时,f(x)=x2为偶函数;
②当a≠0时,f(1)=1+a,f(-1)=1-a;
显然f(-1)≠f(1),且f(-1)≠-f(1),∴f(x)既不是奇函数,也不是偶函数;
(2)f′(x)=2x$-\frac{a}{{x}^{2}}$,要使f(x)在[2,+∞)上是增函数;
只需当x≥2时,f′(x)≥0恒成立;
即$2x-\frac{a}{{x}^{2}}≥0$恒成立;
∴a≤2x3
又x≥2;
∴函数2x3的最小值为16;
∴a≤16;
∴实数a的取值范围为(-∞,16]

点评 考查偶函数、奇函数的定义,在判断f(x)奇偶性时,不要漏了a=0的情况,以及函数单调性和函数导数的关系,清楚函数y=2x3为增函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知正三棱柱ABC-A1B1C1体积为$\frac{9}{4}$,底面是边长为$\sqrt{3}$.若P为底面ABC的中心,则PA1与平面BB1P所成角的正切值大小为(  )
A.$\frac{1}{36}$B.$\frac{3}{109}$C.$\frac{{\sqrt{39}}}{13}$D.$\frac{1}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.分解因式:a2+9b2-6ab-25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.锐角△ABC中:
①sinA+sinB+sinC>cosA+cosB+cosC
②tanAtanB>1
③sin2A+sin2B+sin2C>$\frac{3}{2}$
④sinA+sinB≥$\sqrt{2}$
其中一定成立的有①②③(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的奇函数f(x)=$\frac{ax+b}{{x}^{2}+c}$的图象如图所示,则a,b,c的大小关系是(  )
A.a>b>cB.c>a>bC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.据统计,在某银行的一个营业窗口等候的人数及其相应的概率如下:
排队人数题0人1人2人3人4人5人及5人以上
概率0.050.140.350.30.10.06
试求:
(1)至多有2人等候排队的概率是多少?
(2)至少有3人等候排队的概率是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设随机变量X的概率分布如右下,则P(X≥0)=(  )
X-101
P$\frac{1}{2}$$\frac{1}{3}$p
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设0≤θ≤2π,向量$\overrightarrow{O{P}_{1}}$=(cos θ,sin θ),$\overrightarrow{O{P}_{2}}$=(2+sin θ,2-cosθ),则向量$\overrightarrow{{P}_{1}{P}_{2}}$的模长的最大值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.2005是数列7,13,19,25,31,…,中的第334项.

查看答案和解析>>

同步练习册答案