精英家教网 > 高中数学 > 题目详情

【题目】调查在级风的海上航行中71名乘客的晕船情况,在男人中有12人晕船,25人不晕船,在女人中有10人晕船,24人不晕船

(1)作出性别与晕船关系的列联表;

(2)根据此资料,能否在犯错误的概率不超过0.1的前提下认为级风的海上航行中晕船与性别有关?

晕船

不晕船

总计

男人

女人

总计

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

【答案】(1)列联表见解析;(2)不能在犯错误的概率不超过0.1的前提下认为级风的海上航行中晕船与性别有关.

【解析】试题分析:

(Ⅰ)由题意所统计的人数写出列联表即可;

(Ⅱ)由题意计算 的值,据此可得不能在犯错误的概率不超过0.1的前提下认为级风的海上航行中晕船与性别有关.

试题解析:

(1)

(2)由公式得χ2≈0.08.

χ2<2.706.

∴不能在犯错误的概率不超过0.1的前提下认为级风的海上航行中晕船与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,解不等式

(2)若存在实数,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正项数列的前项和,且满足.

(Ⅰ)计算的值,猜想的通项公式,并证明你的结论;

(Ⅱ)设是数列的前项和,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=-x3x2(m21)x(xR)其中m>0.

(1)m1求曲线yf(x)在点(1f(1))处的切线斜率;

(2)求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,求证:函数有且只有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】调查在级风的海上航行中71名乘客的晕船情况,在男人中有12人晕船,25人不晕船,在女人中有10人晕船,24人不晕船

(1)作出性别与晕船关系的列联表;

(2)根据此资料,能否在犯错误的概率不超过0.1的前提下认为级风的海上航行中晕船与性别有关?

晕船

不晕船

总计

男人

女人

总计

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(x+n展开式的二项式系数之和为256

(1)求n

(2)若展开式中常数项为,求m的值;

(3)若展开式中系数最大项只有第6项和第7项,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若函数上为减函数,求的最小值;

(Ⅱ)若函数为自然对数的底数),,对于任意的,恒有成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是腾讯公司推出的一种手机通讯软件,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户为“A组”,否则为“B组”,调查结果如下:

A组

B组

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有60%的把握认为“A组”用户与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“A组”和“B组”的人数;

(3)从(2)中抽取的5人中再随机抽取2人赠送200元的护肤品套装,求这2人中至少有1人在“A组”的概率.

参考公式:K2=,其中n=a+b+c+d为样本容量.

参考数据:

P(K2k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案