精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD中,四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD能覆盖的单位格点正方形的个数是______个;若菱形AnBnCnDn的四个顶点坐标分别为(-2n,0),(0,n),(2n,0),(0,-n)(n为正整数),则菱形AnBnCnDn能覆盖的单位格点正方形的个数为______(用含有n的式子表示).
∵菱形ABCD的四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),
∴菱形ABCD能覆盖的单位格点正方形的个数是4×4×3=48个;
∵菱形AnBnCnDn的四个顶点坐标分别为(-2n,0),(0,n),(2n,0),(0,-n)(n为正整数),
∴菱形AnBnCnDn能覆盖的单位格点正方形的个数为4×n×(n-1)=4n2-4n.
故答案为:48;4n2-4n.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示的多面体中, 是菱形,是矩形,平面

(1)求证:平面平面
(2)若二面角为直二面角,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

法国数学家费马观察到221+1=5222+1=17223+1=257224+1=65537都是质数,于是他提出猜想:任何形如22n+1(n∈N*)的数都是质数,这就是著名的费马猜想.半个世纪之后,善于发现的欧拉发现第5个费马数225+1=4294967297=641×
6
700417
不是质数,从而推翻了费马猜想,这一案例说明(  )
A.归纳推理,结果一定不正确
B.归纳推理,结果不一定正确
C.类比推理,结果一定不正确
D.类比推理,结果不一定正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下面给出了关于复数的四种类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由向量a的性质|
a
|2=
a
2类比得到复数z的性质|z|2=z2
③方程ax2+bx+c=0(a,b,c⊆R)有两个不同实数根的条件是b2-4ac>0可以类比得到:方程az2+bz+c=0(a,b,c⊆C)有两个不同复数根的条件是b2-4ac>0;
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比错误的是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三角形内切圆的半径r与它的高h的关系是:r=
1
3
h,把这个结论推广到空间正四面体,则正四面体内切球的半径r与正四面体高h的关系是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,若射线OM,ON上分别存在点M1,M2与点N1,N2,则
S△OM1N1
S△OM2N2
=
OM1
OM2
ON1
ON2
;如图2,若不在同一平面内的射线OP,OQ和OR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是什么?这个结论正确吗?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有一段“三段论”推理:对于可导函数f(x),若f(x)在区间(a,b)上是增函数,则f′(x)>0对x∈(a,b)恒成立,因为函数f(x)=x3在R上是增函数,所以f′(x)=3x2>0对x∈R恒成立.以上推理中(  )
A.大前提错误B.小前提错误
C.推理形式错误D.推理正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,(其中
(1)求
(2)试比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数是定义在上的奇函数,且的图像关于直线对称,则

查看答案和解析>>

同步练习册答案