精英家教网 > 高中数学 > 题目详情
已知数列{an}满足(n-1)an+1=(n+1)(an-1)且a2=6,设bn=an+n(n∈N*).
(1)求{bn}的通项公式;
(2)求
lim
n→∞
1
b2-2
+
1
b3-2
+
1
b4-2
+…+
1
bn-2
)的值.
分析:本题考查的知识点是数学归纳法及极限的运算.
(1)由数列{an}满足(n-1)an+1=(n+1)(an-1)且a2=6,设bn=an+n(n∈N*).我们不难给出数列{bn}的前若干项,并能由此归纳推理出数列的通项公式,但归纳推理的结论不一定正确,我们可以用数学归纳学进行证明.
(2)由(1)的结论,结合数列求和的裂项法,我们不难对
lim
n→∞
1
b2-2
+
1
b3-2
+
1
b4-2
+…+
1
bn-2
)进行化简,进而求出
lim
n→∞
1
b2-2
+
1
b3-2
+
1
b4-2
+…+
1
bn-2
)的值.
解答:解:(1)n=1时,由(n-1)an+1=(n+1)(an-1),得a1=1.
n=2时,a2=6代入得a3=15.同理a4=28,
再代入bn=an+n,有b1=2,b2=8,b3=18,b4=32,由此猜想bn=2n2
要证bn=2n2,只需证an=2n2-n.
①当n=1时,a1=2×12-1=1成立.
②假设当n=k时,ak=2k2-k成立.
那么当n=k+1时,由(k-1)ak+1=(k+1)(ak-1),得ak+1=
k+1
k-1
(ak-1)
=
k+1
k-1
(2k2-k-1)=
k+1
k-1
(2k+1)(k-1)=(k+1)(2k+1)=2(k+1)2-(k+1).
∴当n=k+1时,an=2n2-n正确,从而bn=2n2
(2)
lim
n→∞
1
b2-2
+
1
b3-2
+…+
1
bn-2

=
lim
n→∞
1
6
+
1
16
+…+
1
2n2-2

=
1
2
lim
n→∞
[
1
1×3
+
1
2×4
+…+
1
(n-1)(n+1)
]
=
1
4
lim
n→∞
[1-
1
3
+
1
2
-
1
4
+…+
1
n-1
-
1
n+1
]
=
1
4
lim
n→∞
[1+
1
2
-
1
n
-
1
n+1
]
=
3
8
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).但归纳推理的结论不一定正确,我们要利用数学归纳法等方法对归纳的结论进行进一步的论证.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案