精英家教网 > 高中数学 > 题目详情
某公司以每吨10万元的价格销售某种化工产品,每年可售出1000吨,若将该产品每吨的价格上涨x%,则每年的销售量将减少mx%(m>0)
(1)当m=
1
2
时,求销售额的最大值;
(2)若涨价能使销售额增加,求m的取值范围.
考点:函数最值的应用
专题:应用题,不等式的解法及应用
分析:(1)要求当m=
1
2
时,该产品每吨的价格上涨百分之几,可使销售的总金额最大,我们要根据已知条件先构造出函数的解析式,然后根据二次函数求最值的方法,求出销售的总金额的最大值.
(2)由(1)中的解析式,我们易得-mx2+100(1-m)x+10000>10000,解不等式,即可求出m的取值范围.
解答: 解:(1)设产品每吨价格上涨x%时,销售总金额为y元.
则y=10(1+x%)•1000(1-mx%)
=-mx2+100(1-m)x+10000
当m=
1
2
时,y=-
1
2
(x-50)2+11250,
故当x=50时,ymax=11250(元).
(2)y=-mx2+100(1-m)x+10000
y=-mx2+100(1-m)x+10000>10000,
∴0<x<
100(1-m)
m

100(1-m)
m
>0,
∴0<m<1.
点评:函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某企业有三个车间,第一车间有x人,第二车间有300人,第三车间有y人,采用分层抽样的方法抽取容量为45的样本,第一车间被抽到20人,第二车间被抽到10人,问这个企业第一车间和第三车间各有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

重庆实验外国语学校高二年级将从个班推选出来的6个男生,5个女生中任选3人组建“重外学生文明督察岗”,则下列事件中互斥不对立的事件是(  )
A、“3个都是男生”和“至多1个女生”
B、“至少有2个男生”和“至少两个女生”
C、“恰有2个女生”和“恰有1个或3个男生”
D、“至少有2个女生”和“恰有2个男生”

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
a•2x-2+a
2x+1+2
(x∈R),若对x∈R,都有f(-x)=-f(x)成立.
(1)求实数a 的值,并求f(1)值;
(2)讨论函数的单调性,并证明;
(3)解不等式 f(2t2-t)+f(t2-2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x+3)2+(y-4)2=4
(1)若直线l1过点A(-1,0),且与圆C相切,求直线l1的方程;
(2)若圆D的半径为1,圆心D在直线l2:x+y-2=0上,且与圆C内切,求圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为R上的减函数,则满足f(2x)<f(x+1)的实数x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|-2<x<3},N={x|2x+1≥1},则M∩N等于(  )
A、(-2,-1]
B、(-2,1]
C、[1,3)
D、[-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
2
x2-bx+lnx (a,b
∈R).
(Ⅰ) 若a=b=1,求f(x)点(1,f(1))处的切线方程;
(Ⅱ) 设a≤0,求f(x)的单调区间;
(Ⅲ) 设a<0,且对任意的x>0,f(x)≤f(2),试比较ln(-a)与-2b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
(1-a2)x2+3(1-a)x+6

(1)若f(x)的定义域为[-2,1],求实数a的值.
(2)若f(x)的定义域为R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案