精英家教网 > 高中数学 > 题目详情
已知定义在区间(-1,1)内的奇函数f(x)是减函数,若f(1-m)+f(1-m2)<0,求m的范围.
根据题意,∵f(1-m)+f(1-m2)<0,
∴f(1-m)<-f(1-m2),
又∵f(x)是奇函数,则-f(1-m2)=f(m2-1),
∴f(1-m)<f(m2-1),
又∵f(x)是减函数,
∴有1-m>m2-1;
又∵函数的定义域为(-1,1);
∴-1<1-m<1,-1<1-m2<1;
综合有
-1<1-m<1
-1<1-m2<1
1-m>m2-1
,解可得0<m<1;
故m的取值范围为(0,1).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在区间(-1,1)上的函数f(x)=
ax+b
x2+1
为奇函数.且f(
1
2
)=
2
5

(1)、求实数a、b的值.
(2)、求证:函数f(x)在区间(-1,1)上是增函数.
(3)、解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(-1、1)上的函数f(x)=
mx+n
x2+1
为奇函数.且f(
1
2
)=
2
5

(1)、求实数m、n的值.
(2)、解关于 t 的不等式f(t-1)+f(t-2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(I)计算:0.25×(-
1
2
)-1-4÷(
5
-1)0-(
1
27
)-
1
3
+lg25+2lg2

(II)已知定义在区间(-1,1)上的奇函数f(x)单调递增.解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(-1,1)上的函数f(x)=
ax+b
1+x2
为奇函数,且f(
1
2
)=
2
5

(1)求实数a,b的值;
(2)用定义证明:函数f(x)在区间(-1,1)上是增函数;
(3)解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(-1,1)上的偶函数f(x),在(0,1)上为增函数,f(a-2)-f(4-a2)<0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案