【题目】某经销商从外地一水殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:
![]()
(1)记事件
为:“从这批小龙虾中任取一只,重量不超过35
的小龙虾”,求
的估计值;
(2)试估计这批小龙虾的平均重量;
(3)为适应市场需求,制定促销策略.该经销商又将这批小龙虾分成三个等级,并制定出销售单价,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量( |
|
|
|
单价(元/只) | 1.2 | 1.5 | 1.8 |
试估算该经销商以每千克至多花多少元(取整数)收购这批小龙虾,才能获得利润?
【答案】(1)
(2)
(3)这批小龙虾每千克至多
元
【解析】试题分析:(1)根据统计图得到重量不超过
的小龙虾有
,即可求解相应的概率;
(2)从统计图中的数据,利用平均数的计算公式,即可求解这批小龙虾的平均重量;
(3)根据样本,由(2)知,小龙虾中一等品、二等品、三等品的数量,列出关系式,即可 得出结论.
试题解析:(1)由于
只小龙虾中重量不超过
的小龙虾有
(只)
所以![]()
(2)从统计图中可以估计这批小龙虾的平均重量为
(克)
(3)设该经销商收购这批小龙虾每千克至多
元.根据样本,由(2)知,这
只小龙虾中一等品、二等品、三等品各有
只、
只、
只,约有![]()
所以
,而![]()
故可以估计该经销商收购这批小龙虾每千克至多
元
科目:高中数学 来源: 题型:
【题目】轮船
从某港口将一些物品送到正航行的轮船
上,在轮船
出发时,轮船
位于港口
北偏西
且与
相距20海里的
处,并正以30海里的航速沿正东方向匀速行驶,假设轮船
沿直线方向以
海里/小时的航速匀速行驶,经过
小时与轮船
相遇.
(1)若使相遇时轮船
航距最短,则轮船
的航行速度大小应为多少?
(2)假设轮船
的最高航速只能达到30海里/小时,则轮船
以多大速度及什么航行方向才能在最短时间与轮船
相遇,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
与圆![]()
(1)若直线
与圆
相交于
两个不同点,求
的最小值;
(2)直线
上是否存在点
,满足经过点
有无数对互相垂直的直线
和
,它们分别与圆
和圆
相交,并且直线
被圆
所截得的弦长等于直线
被圆
所截得的弦长?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一个居民月用电量标准
,用电量不超过
的部分按平价收费,超出
的部分按议价收费.为此,政府调查了100户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图所示.
![]()
(1)求直方图中
的值;
(2)求月平均用电量的众数和中位数;
(3)如果当地政府希望使
左右的居民每月的用电量不超出标准,根据样本估计总体的思想,你认为月用电量标准
应该定为多少合理?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂拟生产甲、乙两种适销产品,每件销售收入分别为3万元、2万元,甲、乙产品都需要在
两种设备上加工,在每台
上加工1件甲所需工时分别是1
、2
,加工1件乙所需工时分别为2
、1
,
两种设备每月有效使用台时数分别为400
和500
,如何安排生产可使收入最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足R(x)=
,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)要使甲厂有盈利,求产量x的范围;
(3)甲厂生产多少台产品时,可使盈利最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,三棱柱ABC-A1B1Cl中,M,N分别为CC1,A1B1的中点.CA⊥CB1,CA=CB1,BA=BC=BB1.
(I)求证:直线MN//平面CAB1;
(II)求证:直线BA1⊥平面CAB1.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com