【题目】已知函数y=f(x)在R上为奇函数,当x>0时,f(x)=3x2﹣9,则f(﹣2)=
【答案】﹣3
【解析】解:由题意:函数y=f(x)在R上为奇函数,可得:f(0)=0,f(﹣x)=﹣f(x).
当x>0时,f(x)=3x2﹣9,
当x<0时,则﹣x>0,f(﹣x)=3x2﹣9,
∵f(﹣x)=﹣f(x),
∴f(x)=﹣3x2+9,
故得f(x)在R上解析式为: ,
∵﹣2<0,
∴f(﹣2)=﹣3(﹣2)2+9=﹣3.
所以答案是:﹣3.
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】下列各式中,正确的个数是( )
①={0};②{0};③∈{0};④0={0};⑤0∈{0};⑥{1}∈{1,2,3};⑦{1,2}{1,2,3};⑧{a,b}={b,a}.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(Ⅰ)求应从小学、中学、大学中分别抽取的学校数目;
(Ⅱ)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,
(1)列出所有可能的抽取结果;
(2)求抽取的2所学校均为小学的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|﹣x,
(1)用分段函数的形式表示该函数,并画出该函数的图象;
(2)写出该函数的值域、单调区间(不要求证明);
(3)若对任意x∈R,不等式|2x﹣1|≥a+x恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某经销商从外地一水殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:
(1)记事件为:“从这批小龙虾中任取一只,重量不超过35的小龙虾”,求的估计值;
(2)试估计这批小龙虾的平均重量;
(3)为适应市场需求,制定促销策略.该经销商又将这批小龙虾分成三个等级,并制定出销售单价,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量() | |||
单价(元/只) | 1.2 | 1.5 | 1.8 |
试估算该经销商以每千克至多花多少元(取整数)收购这批小龙虾,才能获得利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为,圆与直线交于, 两点, 点的直角坐标为.
(Ⅰ)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f1(x)、f2(x)、h(x),如果存在实数a,b使得h(x)=af1(x)+bf2(x),那么称h(x)为f1(x)、f2(x)的和谐函数.
(1)已知函数f1(x)=x﹣1,f2(x)=3x+1,h(x)=2x+2,试判断h(x)是否为f1(x)、f2(x)的和谐函数?并说明理由;
(2)已知h(x)为函数f1(x)=log3x,f2(x)=log x的和谐函数,其中a=2,b=1,若方程h(9x)+th(3x)=0在x∈[3,9]上有解,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,定义椭圆上的点的“伴随点”为.
(1)求椭圆上的点的“伴随点”的轨迹方程;
(2)如果椭圆上的点的“伴随点”为,对于椭圆上的任意点及它的“伴随点”,求的取值范围;
(3)当, 时,直线交椭圆于, 两点,若点, 的“伴随点”分别是, ,且以为直径的圆经过坐标原点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知⊙: 与⊙: ,以, 分别为左右焦点的椭圆: 经过两圆的交点。
(Ⅰ)求椭圆的方程;
(Ⅱ)、是椭圆上的两点,若直线与的斜率之积为,试问的面积是否为定值?若是,求出这个定值;若不是,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com