精英家教网 > 高中数学 > 题目详情
10.设a>0且a≠1,命题p:函数f(x)=loga(1+x)为增函数,命题Q:不等式x2+ax+2<0有解,若P∧Q为假,求实数a的取值范围.

分析 先求出命题P、Q为真命题时a的取值范围,再求出P∧Q为真命题时a的取值范围,从而求出P∧Q为假命题时a的取值范围.

解答 解:命题P中,函数f(x)=loga(1+x)为增函数时,a>1,
即P为真命题时,a>1; (3分)
命题Q中,不等式x2+ax+2<0有解,△=a2-8>0,且a>0,
解得a>2$\sqrt{2}$,
即Q为真命题时a>2$\sqrt{2}$; (6分)
所以,P∧Q为真命题时,a的取值范围是a>2$\sqrt{2}$;(8分)
P∧Q为假命题时,a的取值范围是0<a≤2$\sqrt{2}$. (10分)

点评 本题考查了对数函数的图象与性质的应用问题,也考查了一元二次不等式的解法与应用问题,考查了复合命题真假的判断问题,是综合题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知a=50.1,b=50.2,c=9-0.1,a,b,c的大小是(  )
A.a>b>cB.b>c>aC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题“?x∈R,1-x2≤1”的否定是(  )
A.?x∈R,1-x2≤1B.?x∈R,1-x2>1C.?x∈R,1-x2<1D.?x∈R,1-x2>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,已知(b+c):(c+a):(a+b)=4:5:6,则此三角形的最大内角是(  )
A.120°B.150°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下面推理正确的是(  )
A.如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖
B.因为正方形的对角线互相平分且相等,所以对角线互相平分且相等的四边形是正方形
C.因为a>b,a<c,所以a-b<a-c
D.因为a>b,c>d,所以a-d>b-c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设非零向量$\overrightarrow a$、$\vec b$、$\overrightarrow c$满足$|\overrightarrow a|=|\overrightarrow b|=|\overrightarrow c|,\overrightarrow a+\overrightarrow b=\overrightarrow c$,则向量$\vec a$与向量$\overrightarrow c$的夹角为(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果0<p<15,那么代数式|x-p|+|x-15|+|x-p-15|在p≤x≤15的最小值是(  )
A.30B.0
C.15D.一个与p 有关的代数式

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0)(x1≠x2),都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0.则下列结论正确的是(  )
A.f(0.32)<f(20.3)<f(log25)B.f(log25)<f(20.3)<f(0.32
C.f(log25)<f(0.32)<f(20.3D.f(0.32)<f(log25)<f(20.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等比数列{an}中,若S6=9,前3项和S3=8,则数列{an}的公比为(  )
A.2B.$\frac{1}{2}$C.1或$\frac{1}{2}$D.1或2

查看答案和解析>>

同步练习册答案