精英家教网 > 高中数学 > 题目详情
某次飞行表演中,一架直升从空中A处测出前下方海岛两侧海岸P、Q处的俯角分别是45°和30°(如右图所示,A、P、Q在同一平面内).
(1)若直升飞机在海拔800m的高度飞行,试计算这个海岛的宽度PQ.
(2)若地面观测者测得P、Q两海岸距离大约为600m,由此试估算出观测者甲(在P处)到飞机的直线距离(精确到100m).
考点:解三角形的实际应用
专题:综合题,解三角形
分析:(1)先在Rt△ACP中求出PC,再在Rt△ACQ中求出CQ,即可求出这个海岛的宽度PQ.
(2)先在△APQ中锝,PQ=600,∠AQP=30°,∠PAQ=45°-30°=15°.再利用正弦定理即可求出PA,即为观测者甲(在P处)到飞机的直线距离.
解答: 解:(1)在Rt△ACP中,
PC
AC
=tan∠CAP

则PC=800×tan45°=800.(3分)
在Rt△ACQ中,
QC
AC
=tan∠CAQ,则QC=800
3
.(5分)
所以,PQ=QC-PC=800
3
-800(m).(7分)
(2)在△APQ中,PQ=600,∠AQP=30°,∠PAQ=45°-30°=15°.(8分)
根据正弦定理,得
PA
sin30°
=
600
sin15°
,(10分)
则PA=300(
6
+
2
)≈11589m.
故观测者甲(在P处)到飞机的直线距离为11589m(14分)
点评:本题主要考查解三角形的实际应用.这一类型题目,一般都是借助与正弦定理,余弦定理来求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-p)|x-p|+tlnx(t<0,p≥0),
(Ⅰ)当t=-1,p=0时,求函数f(x)的极值;
(Ⅱ)当p=
1
2
 , t=-
3
2
时,求函数f(x)的单调区间;
(Ⅲ)当p=
t
2
+1时,若f(x)≥
1
9
对于x∈(p,+∞)时恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3,PB=2,PC=2.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
3
,x,y),则x+y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
9
-
y2
b2
=1(b>0)左焦点F1的直线l与双曲线左支交于A,B两点,若|AF2|+|BF2|(F2是双曲线的右焦点)的最小值为14,则b的值是   (  )
A、1
B、
2
C、
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+
1
ex

(Ⅰ)求函数f(x)的最小值;
(Ⅱ)若对所有x≤0都有f(x)≥ax+1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),F为左焦点,A为左顶点,B为上顶点,C为下顶点,且
AB
CF
=0,则椭圆的离心率为(  )
A、
2
-1
2
B、
3
-1
2
C、
5
-1
2
D、
6
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-bx+1.
(Ⅰ)若f(x+1)-f(x)=2x,求a,b的值;
(Ⅱ)若b=a+2,且f(x)在(-2,-l)内恰有-个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,曲线 
x=cosφ
y=sinφ
(φ为参数),经坐标变换
x′=ax
y′=by
(a>0,b>0)后所得曲线记为C.A、B是曲线C上两点,且OA⊥OB.
(1)求曲线C的普通方程;
(2)求证:点O到直线AB的距离为定值.

查看答案和解析>>

同步练习册答案