精英家教网 > 高中数学 > 题目详情
11.函数f(x)=$\sqrt{2x-{x^2}}$的单调递增区间是[0,1].

分析 根据复合函数单调性之间的关系进行求解即可.

解答 解:设t=2x-x2,则y=$\sqrt{t}$为增函数,
由2x-x2≥0,得0≤x≤2,即函数的定义域为[0,2],
函数t=2x-x2的对称轴为x=1,
要求f(x)的单调递增区间,即求函数t=2x-x2的单调递增区间,
∵t=2x-x2的单调递增区间为[0,1],
∴函数f(x)的单调递增区间为[0,1],
故答案为:[0,1]

点评 本题主要考查函数单调递增区间的求解,根据复合函数单调性之间的关系,利用换元法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设m,n为两条不同的直线,α,β,γ为三个不同的平面,则下列命题中为假命题的是(  )
A.若m⊥α,n⊥α,则m∥nB.若α∥β,β⊥γ,则α⊥γC.若m∥n,m⊥α,则n⊥αD.若α⊥γ,β⊥γ,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某中学为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用图的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为0.97小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若直线3x+4y+m=0与圆x2+y2-2x+4y+1=0没有公共点,则实数m的取值范围是(  )
A.-5<m<15B.m<-5或m>15C.m<4或m>13D.4<m<13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合P={x|-$\frac{1}{3}$≤x≤3},Q={x|-2<x≤$\frac{1}{3}$}.则集合P∪Q=(  )
A.[-2,3)B.(-2,3]C.$[{-\frac{1}{3},3})$D.$[{-\frac{1}{3},\frac{1}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知ω>0,在函数y=2sinωx与y=2cosωx的图象交点中,距离最短的两个交点的距离为2$\sqrt{3}$,则ω的值为(  )
A.πB.$\frac{π}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.经过点P(0,-1)作直线l,若直线l与连接A(1,-2),B(2,1)的线段总有公共点,则斜率k的取值范围为(  )
A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设集合A={x|-4<x<2},B={x|x<1},则如图中阴影部分表示的集合为[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知方程ax2+x+b=0.
(1)若方程的解集为{1},求实数a,b的值;
(2)若方程的解集为{1,3},求实数a,b的值.

查看答案和解析>>

同步练习册答案