精英家教网 > 高中数学 > 题目详情

函数内只取到一个最大值和一个最小值,且当时,;当时,.(1)求此函数的解析式;(2)求此函数的单调递增区间.

(1);(2).

解析试题分析:(1)根据题意可得A=3,是在一个周期内相邻的最小值与最大值点,因此可以得到周期,从而,再根据点在此函数图像上,可得,因此可以得到函数解析式为;(2)根据正弦函数上单调递增,
可令,解得,从而可以得到函数的单调递增区间为.
(1)由题意得,∴,∴
又∵点在此函数图像上,∴
,∴,∴
(2)令,解得
∴此函数的单调递增区间为. 
考点:正弦型函数的图像与性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知.
(1)求
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)求函数的最小正周期和单调递增区间;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交于点A,与钝角α的终边OB交于点B(xB,yB),设∠BAO=β.

(1)用β表示α;
(2)如果 sin β=,求点B(xB,yB)坐标;
(3)求xB-yB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数取得最大值和最小值时的值;
(2)设锐角的内角A、B、C的对应边分别是,且,若向量与向量平行,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

化简:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的值;
(2)当时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数图象的一条对称轴为
(1)求的值;      
(2)若存在使得成立,求实数m的取值范围;
(3)已知函数在区间上恰有50次取到最大值,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知sin(3π+α)=2sin(+α),求下列各式的值:
(1)
(2)sin2α+sin2α.

查看答案和解析>>

同步练习册答案