分析 (1)利用诱导公式,同角三角函数基本关系式化简函数解析式,进而利用诱导公式,特殊角的三角函数值即可得解.
(2)由f(α )=-tanα=$\frac{2}{5}$,利用同角三角函数基本关系式可求cosα=±$\sqrt{\frac{1}{1+ta{n}^{2}α}}$的值.
解答 解:(1)f(α)=$\frac{sin(α-\frac{13π}{2})•tan(α-3π)}{cos(α+\frac{9π}{2})•tan(\frac{7π}{2}+α)}$=$\frac{(-cosα)tanα}{(-sinα)cotα}$=-tanα,
可得:f(-$\frac{67π}{6}$)=-tan(-$\frac{67π}{6}$)=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$.
(2)∵f(α )=-tanα=$\frac{2}{5}$,可求:tanα=-$\frac{2}{5}$,
∴cosα=±$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=±$\sqrt{\frac{1}{1+\frac{4}{25}}}$=±$\frac{5\sqrt{29}}{29}$.
点评 本题主要考查了诱导公式,同角三角函数基本关系式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2k-1 | B. | 2k-1 | C. | 2k | D. | 2k+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com