精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.
分析:(Ⅰ)依题意得c=1,-
b
2a
=-1
,b2-4ac=0,由此能求出f(x).
(Ⅱ)F(x)=x2+(2-k)x+1,对称轴为x=
k-2
2
,图象开口向上当
k-2
2
≤-2
时,F(x)在[-2,2]上单调递增,此时函数F(x)的最小值g(k)=F(-2)=2k+1,当-2<
k-2
2
≤2
时,F(x)在[-2,
k-2
2
]
上递减,在[
k-2
2
,2]
上递增此时函数F(x)的最小值g(k)=F(
k-2
2
)=-
k_-4k
4
;当
k-2
2
>2
即k>6时,F(x)在[-2,2]上单调递减,此时函数F(x)的最小值g(k)=F(2)=9-2k.由此能求出结果.
解答:解:(Ⅰ)∵二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),
且与x轴有唯一的交点(-1,0).
∴c=1,-
b
2a
=-1
,b2-4ac=0
解得a=1,b=2,c=1,
从而f(x)=x2+2x+1;
(Ⅱ)F(x)=x2+(2-k)x+1,对称轴为x=
k-2
2
,图象开口向上
k-2
2
≤-2
即k≤-2时,F(x)在[-2,2]上单调递增,
此时函数F(x)的最小值g(k)=F(-2)=2k+1
-2<
k-2
2
≤2
即-2<k≤6时,F(x)在[-2,
k-2
2
]
上递减,在[
k-2
2
,2]
上递增
此时函数F(x)的最小值g(k)=F(
k-2
2
)=-
k2-4k
4

k-2
2
>2
即k>6时,F(x)在[-2,2]上单调递减,
此时函数F(x)的最小值g(k)=F(2)=9-2k;
综上,函数F(x)的最小值g(k)=
2k+1,k≤-2
-
k2-4k
4
,-2<k≤6
9-2k,k>6
点评:本题考查二次函数的性质和综合运用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案