精英家教网 > 高中数学 > 题目详情
11.已知sinx+cosx=$\frac{1-\sqrt{3}}{2}$,且0<x<π,求下列各式的值:
(1)sin4x+cos4x; 
(2)tanx.

分析 利用已知条件求出角x正弦函数与余弦函数值,然后求解所求表达式的值.

解答 解:sinx+cosx=$\frac{1-\sqrt{3}}{2}$<0,又0<x<π,可知x∈($\frac{π}{2},π$),
又sin2x+cos2x=1,可得sinx=$\frac{1}{2}$,cosx=$-\frac{\sqrt{3}}{2}$.
(1)sin4x+cos4x=$\frac{1}{16}+\frac{9}{16}$=$\frac{5}{8}$; 
(2)tanx=$-\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$=-$\frac{\sqrt{3}}{3}$.

点评 本题考查同角三角函数的基本关系式的应用,三角函数的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$.
(1)证明:函数F(x)=[f(x)]2-[g(x)]2是常数函数;
(2)判断G(x)=$\frac{g(x)}{f(x)}$的奇偶性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知关于x的方程log2(x+24)-log4x2=a在区间(3,8)内有解,则a的取值范围是a∈(2,log29).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.写出:从0,1,2,3,4五个数字中任取两个数字组成的所有两位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知方程x2+(m-2)x+2m-1=0有两根x1,x2,且x1∈(0,1),x2∉[0,1].求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C的方程为x2+y2+(m-2)x+(m+1)y+m-2=0.根据下列条件确定实数m的取值.并写出相应的圆心坐标和半径.
(1)圆的面积最小;
(2)圆心距离坐标原点最近.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\frac{sinα}{|sinα|}$+$\frac{|cosα|}{cosα}$+$\frac{tanα}{|tanα|}$+$\frac{|tanα|}{tanα}$=0,确定sin(cosα)•tan(sin$\frac{α}{2}$)的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数f(x)=|x2-1|在点x=x0处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于抛物线y=4x2,下列描述正确的是(  )
A.开口向上B.开口向下C.开口向左D.开口向右

查看答案和解析>>

同步练习册答案