解答:解:(1)当α=1时,
an+1=f(an)=,两边取倒数,得
-=1,----(2分)
故数列
{}是以
=2为首项,1为公差的等差数列,
=n+1,
an=,n∈N*.--------------(4分)
(2)证法1:由(1)知
an=,故对k=1,2,3…
akak+1ak+2==
[-]-------------(6分)
∴a
1a
2a
3+a
2a
3a
4+…+a
na
n+1a
n+2
=
[(-)+(-)+…+-]=
[-]=
.------------------------------(9分).
[证法2:①当n=1时,等式左边=
=,
等式右边=
=,左边=右边,等式成立;-------------------------(5分)
②假设当n=k(k≥1)时等式成立,
即
a1a2a3+a2a3a4+…+akak+1ak+2=,
则当n=k+1时
a1a2a3+a2a3a4+…+akak+1ak+2+ak+1ak+2ak+3=+=
k(k+5)(k+4)+12 |
12(k+2)(k+3)(k+4) |
=k3+9k2+20k+12 |
12(k+2)(k+3)(k+4) |
=
k2(k+1)+4(k+1)(2k+3) |
12(k+2)(k+3)(k+4) |
=(k+1)(k+2)(k+6) |
12(k+2)(k+3)(k+4) |
=(k+1)[(k+1)+5] |
12[(k+1)+2][(k+1)+3] |
这就是说当n=k+1时,等式成立,----------------------------------------(8分)
综①②知对于?n∈N*有:
a1a2a3+a2a3a4+…+anan+1an+2=.----(9分)]
(3)当α=2时,
an+1=f(an)=则
an+1-an=-an=an(1-an),-------------------(10分)
∵0<a
n<1,
∴
an+1-an=an(1-an)≤()2•--------------------------------(11分)=
•=
•≤•=
.--------------------(13分)
∵a
n=1-a
n与
an+1=不能同时成立,∴上式“=”不成立,
即对?n∈N
*,
an+1-an<.-----------------------------------------------------------(14分)
证法二:当α=2时,
an+1=f(an)=,
则
an+1-an=-an=----------------------------------------------------(10分)
又0<a
n<1,∴
=>1,
∴a
n+1>a
n,∴a
n∈[
,1),n∈N
*------------------------------------------------(11分)
令
g(x)=,x∈[,1),则
g′(x)=,--------------------------(12分)
当
x∈[,1),g′(x)<0,所以函数g(x)在
[,1)单调递减,故当
x∈[,1),g(x)≤=<,所以命题得证------------------(14分)
所以命题得证-----------------------------------------(14分)