精英家教网 > 高中数学 > 题目详情
如图,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,F是AE的中点.
(1)证明:DF平面ABC;
(2)求AB与平面BDF所成角的大小.
精英家教网
证明:(1)取AB中点G,连CG,GF,则GFBE,且GF=
1
2
BE.
∴GFCD且GF=CD
∴四边形FGCD为平行四边形.∴DFCG,
∵CG?平面ABC又DF?平面ABC
∴DF平面ABC.
(2)设A到平面BDF距离为h,由VA-BDF=VD-ABFh=
S△ABF•CB
S△BDF

又△BDF中,BF=
2
,BD=DF=
5
,∴S△BDF=
3
2
S△ABF=
1
2
S△ABE=1,CB=2

h=
1×2
3
2
=
4
3

设AB与平面BDF所成角为θ,则sinθ=
h
AB
=
2
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.
(1)求证:DF∥平面ABC;
(2)求二面角F-BD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,F是AE的中点.
(1)证明:DF∥平面ABC;
(2)求AB与平面BDF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)若D是BC的中点,求证:B1D∥平面A1C1C;
(3)若BC=2,求几何体ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年新建二中模拟)如图,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC = 90°,BECD都垂直于平面ABC,且BE = AB = 2,CD = 1,点FAE的中点.
  (1)求证:DF∥平面ABC
    (2)求AB与平面BDF所成角的大小.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省潍坊市高三上学期期末考试文科数学试卷(解析版) 题型:解答题

如图,在几何体中,点在平面ABC内的正投影分别为ABC,且E中点,

(1)求证;CE∥平面

(2)求证:平面平面

 

查看答案和解析>>

同步练习册答案