精英家教网 > 高中数学 > 题目详情
已知定义域为的函数是奇函数.
(Ⅰ)求实数的值;
(Ⅱ)判断函数的单调性;
(Ⅲ)若对任意的,不等式恒成立,求的取值范围.
(Ⅰ) 
(Ⅱ)上为减函数。            
(Ⅲ)

试题分析:(Ⅰ)因为是奇函数,所以=0,
 
(Ⅱ)由(Ⅰ)知

因为函数y=2在R上是增函数且 ∴>0
>0 ∴>0即
上为减函数。            
(Ⅲ)因是奇函数,从而不等式:  
等价于
为减函数,由上式推得:.即对一切有:
从而判别式
点评:中档题,本题将函数的奇偶性、单调性,抽象不等式的解法综合在一起考查,注重了学生综合运用数学知识处理问题能力的考查。解答过程中,注意利用转化与化归思想,将抽象不等式问题,转化成具体不等式求解,是正确解题的关键。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某面包厂2011年利润为100万元,因市场竞争,若不开发新项目,预测从2012年起每年利润比上一年减少4万元.2012年初,该面包厂一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第年(为正整数,2012年为第一年)的利润为万元.设从2012年起的前年,该厂不开发新项目的累计利润为万元,开发新项目的累计利润为万元(须扣除开发所投入资金).
(1)求的表达式;
(2)问该新项目的开发是否有效(即开发新项目的累计利润超过不开发新项目的累计利润),如果有效,从第几年开始有效;如果无效,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是(   )
A.B.
C.D.不存在这样的实数k

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,曲线在点处的切线方程为
(1)确定的值
(2)若过点(0,2)可做曲线的三条不同切线,求的取值范围
(3)设曲线在点处的切线都过点(0,2),证明:当时,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若对任意的实数x∈,都有f(x)-2mx≤1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司拟投资开发某种新能源产品,估计能获得10万元至1000万元的投资收益.为加快开发进程,特制定了产品研制的奖励方案:奖金(万元)随投资收益(万元)的增加而增加,但奖金总数不超过9万元,同时奖金不超过投资收益的20%. 
现给出两个奖励模型:①;②.
试分析这两个函数模型是否符合公司要求?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为4,且f( 1)>1,

f(2)=m2-2m,f(3)= ,则实数m的取值集合是(   )
A.B.{O,2}
C.D.{0}

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数在区间[0,4]的最大值是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在上的函数满足.若当时.,则当时,=        .

查看答案和解析>>

同步练习册答案