精英家教网 > 高中数学 > 题目详情

【题目】已知为常数函数

(1)当时,求函数的最小值

(2)若有两个极值点):

求实数的取值范围

求证:

【答案】(1);(2证明见解析.

【解析】

试题分析:(1)由函数的导数的符号可知函数的单调性,进而求得的最小值;(2有两个极值点)可知有两个根,即得,再令,求的值域即可;要证即证即证构造函数,利用导数法求其最大值小于零即可.

试题解析:

(1),定义域为所以

(2)由于有两个极值点可得有两个不同解有两个不同解所以由数形结合可得

要证即证即证即证构造函数注意注意所以可得,所以单调递增可得进而

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:

,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.

(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=x﹣a2lnx,aR

I若x=e是y=fx的极值点,求实数a的值;

若函数y=fx﹣4e2只有一个零点,求实数a的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题抛物线的焦点在椭圆.命题直线经过抛物线的焦点,且直线过椭圆的左焦点是真命题.

I求直线的方程;

II直线与抛物线相交于,直线,分别切抛物线于,求的交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,求的单调区间;

时,的图象恒在的图象上方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中

() 在其定义域内为单调递减函数,求的取值范围;

() 是否存在实数使得时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由其中是自然对数的底数,=2.71828.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2009年推出一种新型家用轿车,购买时费用万元,每年应交保险费、养路费及汽油费共万元,汽车的维修费为:第一年无维修费用,第二年为万元,从第三年起,每年的维修费均比上一年增加万元.

1)设该辆轿车使用的总费用(包括购买费用、保险、养路费、汽油及维修费)表达式;

2)这种汽车使用多少年报废最合算即该车使用多少年,年平均费用最少)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面 中点.

(1)求异面直线所成角的余弦值;

(2)在线段,且,若直线与平面所成角的正弦值为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

同步练习册答案