精英家教网 > 高中数学 > 题目详情
(
1
2
)-1+(
1
4
)0+
log25625+lg
1
100
+ln
e
=
 
考点:函数解析式的求解及常用方法,对数的运算性质
专题:计算题
分析:结合对数以及指数的运算性质,从而得到计算结果.
解答: 解:原式=2+1+2-2+
1
2
=
7
2

故答案为:
7
2
点评:本题考查了对数以及指数的运算,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在极坐标系内,已知曲线C1的方程为ρ2-2ρ(cosθ-2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为
5x=1-4t
5y=18+3t
(t为参数).
(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;
(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=
3
-
2
,b=
6
-
5
,c=
7
-
6
,则a、b、c的大小顺序是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=1,|
b
|=2,(
a
+
b
)⊥
a
,则向量
a
与向量
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,E、F分别是AA1、AB的中点,则EF与对角面BDD1B1所成角的度数是(  )
A、30°B、45°
C、60°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)满足f(-x)+f(x)=0,且f(x+1)=f(1-x),若f(1)=5,则f(2015)=(  )
A、5B、-5C、0D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sinx+cosx(x∈R)的图象向左平移m(m>0)个单位长度后,得到图象关于y轴对称,则m的最小值为(  )
A、
π
4
B、
π
3
C、
π
2
D、π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x+1,x∈[-1,0)
x2+1,x∈[0,1]
,则下列函数的图象错误的是(  )
A、
f(x-1)的图象
B、
f(-x)的图象
C、
f(|x|)的图象
D、
|f(x)|的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A={x|x>1},B={x|x2-2x>0},则∁U(A∪B)=(  )
A、{x|x≤2}
B、{x|x≥1}
C、{x|0≤x≤1}
D、{x|0≤x≤2}

查看答案和解析>>

同步练习册答案