精英家教网 > 高中数学 > 题目详情
(2012•珠海二模)某学校900名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(1)若成绩小于14秒认为优秀,求该样本在这次百米测试中成绩优秀的人数;
(2)请估计本年级900名学生中,成绩属于第三组的人数;
(3)若样本第一组中只有一个女生,其他都是男生,第五组则只有一个男生,其他都是女生,现从第一、五组中各抽2个同学组成一个实验组,设其中男同学的数量为ξ,求ξ的分布列和期望.
分析:(1)根据题意,成绩在第一组的为优秀,其频率为0.06,由频率计算公式即可算出该样本中成绩优秀的人数;
(2)由频率分布直方图知成绩在第三组的频率0.38,因此估计成绩属于第三组的人数约为900×0.38=342人;
(3)由题意,ξ的可能取值为1,2,3.根据古典概型的概率计算公式分别计算出概率,即可得到分布列及数学期望.
解答:解:(1)由频率分布直方图知,成绩在第一组的为优秀,频率为0.06,
人数为:50×0.06=3
所以该样本中成绩优秀的人数为3. …(3分)
(2)由频率分布直方图知,成绩在第三组的频率0.38,以此估计本年级900名学生成绩属于第三组的概率为0.38,
人数为:900×0.38=342
所以估计本年级900名学生中,成绩属于第三组的人数为342.…(7分)
(3)ξ的可能取值为1,2,3;
p(ξ=1)=
C
1
1
C
1
2
C
2
3
×
C
2
3
C
0
1
C
2
4
=
1
3
…(8分)
p(ξ=2)=
C
2
2
C
0
1
C
2
3
×
C
0
1
C
2
3
C
2
4
+
C
1
2
C
1
1
C
2
3
×
C
1
1
C
1
3
C
2
4
=
1
2
…(9分)
p(ξ=3)=
C
2
2
C
0
1
C
2
3
×
C
1
1
C
1
3
C
2
4
=
1
6
…(10分)
∴ξ的分布列为:
P 1 2 3
ξ 1/3 1/2 1/6
…(11分)
Eξ=1×p(ξ=1)+2×p(ξ=2)+3×p(ξ=3)=
11
6
=1
5
6
…(12分)
点评:本题给出频率分布直方图,求样本中成绩优秀的人数、900名学生中成绩属于第三组的人数的估计值,并求一个随机事件的概率.着重考查了频率分布的计算公式和古典概型计算公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•珠海二模)△ABC中,角A、B、C所对的边a、b、c,若a=
3
A=
π
3
cosB=
5
5
,b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)如图1,在边长为4cm的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合于点B,构成一个三棱锥(如图2).
(1)判别MN与平面AEF的位置关系,并给予证明;
(2)证明:平面ABE⊥平面BEF;
(3)求多面体E-AFNM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)(坐标系与参数方程选做题)
曲线ρ=4cosθ关于直线θ=
π4
对称的曲线的极坐标方程为
ρ=4sinθ
ρ=4sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)已知函数f(x)=
1
3
x3+ax2+bx
(a,b∈R).
(Ⅰ)若曲线C:y=f(x)经过点P(1,2),曲线C在点P处的切线与直线x+2y-14=0垂直,求a,b的值;
(Ⅱ)在(Ⅰ)的条件下,试求函数g(x)=(m2-1)[f(x)-
7
3
x]
(m为实常数,m≠±1)的极大值与极小值之差;
(Ⅲ)若f(x)在区间(1,2)内存在两个不同的极值点,求证:0<a+b<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)已知单位向量
a
b
,其夹角为
π
3
,则|
a
+
b
|
=(  )

查看答案和解析>>

同步练习册答案