精英家教网 > 高中数学 > 题目详情
(2013•山东)在区间[-3,3]上随机取一个数x使得|x+1|-|x-2|≥1的概率为
1
3
1
3
分析:本题利用几何概型求概率.先解绝对值不等式,再利用解得的区间长度与区间[-3,3]的长度求比值即得.
解答:解:利用几何概型,其测度为线段的长度.
由不等式|x+1|-|x-2|≥1 可得 ①
x<-1
(-x-1)-(2-x)≥1
,或②
-1≤x<2
(x+1)-(2-x)≥1

x≥2
(x+1)-(x-2)≥1

解①可得x∈∅,解②可得1≤x<2,解③可得 x≥2.
故原不等式的解集为{x|x≥1},
∴|在区间[-3,3]上随机取一个数x使得|x+1|-|x-2|≥1的概率为P=
3-1
3-(-3)
=
1
3

故答案为:
1
3
点评:本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•山东)在平面直角坐标系xOy中,M为不等式组
2x-y-2≥0
x+2y-1≥0
3x+y-8≤0
所表示的区域上一动点,则直线OM斜率的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)在平面直角坐标系xOy中,M为不等式组
2x+3y-6≤0
x+y-2≥0
y≥0
所表示的区域上一动点,则直线|OM|的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)在平面直角坐标系xOy中,已知
OA
=(-1,t)
OB
=(2,2)
,若∠ABO=90°,则实数t的值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为
2
2

(Ⅰ)求椭圆C的方程
(Ⅱ)A,B为椭圆C上满足△AOB的面积为
6
4
的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设
OP
=t
OE
,求实数t的值.

查看答案和解析>>

同步练习册答案