【题目】将下列问题的解答过程补充完整.
依次计算数列
,
,
,
,…的前四项的值,由此猜测
的有限项的表达式,并用数学归纳法加以证明.
解:计算
,
,
① ,
② ,
由此猜想
③ .(*)
下面用数学归纳法证明这一猜想.
(i)当
时,左边
,右边
,所以等式成立.
(ⅱ)假设当
时,等式成立,即
④ .
那么,当
时,
⑤
⑥
⑦ .
等式也成立.
根据(i)和(ⅱ)可以断定,(*)式对任何
都成立.
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
已知椭圆
:
的左、右顶点分别为A,B,其离心率
,点
为椭圆上的一个动点,
面积的最大值是
.
(1)求椭圆的方程;
(2)若过椭圆
右顶点
的直线
与椭圆的另一个交点为
,线段
的垂直平分线与
轴交于点
,当
时,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】类比平面几何中的定理:△ABC中,若DE是△ABC的中位线,则有S△ADE∶S△ABC=1∶4;若三棱锥A-BCD有中截面EFG∥平面BCD,则截得三棱锥的体积与原三棱锥体积之间的关系式为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若函数
在
处的切线方程为
,求实数
,
的值;
(2)若函数
在
和
两处取得极值,求实数
的取值范围;
(3)在(2)的条件下,若
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)和圆
:
,
分别是椭圆的左、右两焦点,过
且倾斜角为
(
)的动直线
交椭圆
于
两点,交圆
于
两点(如图所示,点
在
轴上方).当
时,弦
的长为
.
![]()
(1)求圆
与椭圆
的方程;
(2)若
依次成等差数列,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将边长为2的正方形ABCD沿PD、PC翻折至A、B两点重合,其中P是AB中点,在折成的三棱锥A(B)-PDC中,点Q在平面PDC内运动,且直线AQ与棱AP所成角为60,则点Q运动的轨迹是
![]()
A. 圆 B. 椭圆 C. 双曲线 D. 抛物线
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com