精英家教网 > 高中数学 > 题目详情
已知tan(α+β)=
1
2
,tan(β-
π
4
)=
1
3
,则tan(α+
π
4
)=(  )
A、7
B、
1
7
C、1
D、-1
考点:两角和与差的正切函数
专题:三角函数的求值
分析:α+
π
4
=(α+β)-(β-
π
4
),依题意,利用两角差的正切即可求得答案.
解答: 解:α+
π
4
=(α+β)-(β-
π
4
),tan(α+β)=
1
2
,tan(β-
π
4
)=
1
3

∴tan(α+
π
4
)=tan[(α+β)-(β-
π
4
)]=
tan(α+β)-tan(β-
π
4
)
1+tan(α+β)tan(β-
π
4
)
=
1
2
-
1
3
1+
1
2
×
1
3
=
1
7

故选:B.
点评:本题考查两角和与差的正切函数,分析得到α+
π
4
=(α+β)-(β-
π
4
)是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某家电专卖店在国庆期间设计一项有奖促销活动,每购买一台电视,即可通过电脑产生一组3个数的随机数组,根据下表兑奖:
奖次一等奖二等奖三等奖
随机数组的特征3个1或3个0只有2个1或2个0只有1个1或1个0
奖金(单位:元)5m2mm
商家为了了解计划的可行性,估计奖金数,进行了随机模拟试验,并产生了20个随机数组,试验结果如下:
247,235,145,324,754,500,296,065,379,118,520,161,218,953,254,406,227,111,358,791.
(1)在以上模拟的20组数中,随机抽取3组数,求至少有1组获奖的概率;
(2)根据以上模拟试验的结果,将频率视为概率:
(i)若活动期间某单位购买四台电视,求恰好有两台获奖的概率;
(ii)若本次活动平均每台电视的奖金不超过85元,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数f(x)=sin(2x+
π
3
)的导函数f′(x)的图象,只需将f(x)的图象(  )
A、向左平移
π
2
个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)
B、向左平移
π
2
个单位,再把各点的纵坐标缩短到原来的
1
2
(横坐标不变)
C、向左平移
π
4
个单位,再把各点的纵坐标缩短到原来的
1
2
(横坐标不变)
D、向左平移
π
4
个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)在△ABC中,∠A、∠B、∠C所对的边分别是a、b、c,设平面向量
e1
=(2cosC,
c
2
-b),
e2
=(
1
2
a,1),且
e1
e2

(I)求cos2A的值;      
(Ⅱ)若a=2,则△ABC的周长L的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为(  )
A、-
3
B、±
3
C、-
3
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)函数f(x)=
2x-x2
lg(2x-1)
+(3-2x)0的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正三角形ABC中,AB=3,D是边BC上的点,且满足
BC
=2
BD
,则
AB
AD
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x-4
3-x
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的角A,B,C的对边分别为a,b,c,若a=2,c=4,B=60°,则b等于(  )
A、28
B、2
7
C、12
D、2
3

查看答案和解析>>

同步练习册答案