精英家教网 > 高中数学 > 题目详情
.(本题14分)过点的椭圆)的离心率为,椭圆与轴的交于两点),),过点的直线与椭圆交于另一点,并与轴交于点,直线与直线叫与点
(I)当直线过椭圆右交点时,求线段的长;
(II)当点异于两点时,求证:为定值.
解:(I)由已知得,解得
∴ 椭圆方程为 ,--------------------3分
右焦点为,直线的方程为
代入椭圆方程化简得 ,∴ , -------4分
代入直线的方程得 ,所以,D点坐标为.-------5分
        -------------------7分
(II))当直线轴垂直时与题意不符,                -------------------8分
当直线轴不垂直时,设直线的方程为 )-------9分
代入椭圆方程化简得
解得,                     
代入直线的方程得          
所以,D点坐标为           -------------------11分
又直线的方程为 ,直线的方程为
联立解得,              -----------------------------13分
因此点的坐标为(),又点坐标为(),
所以
为定值.          -----------------------------14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点,则(   ).
A.50B.35C.32D.41

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

等轴双曲线C与椭圆有公共的焦点,则双曲线C的方程为____________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示, 底面直径为的圆柱被与底面成的平面所截,其截口是一个椭圆,则这个椭圆的离心率为               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在椭圆中,为椭圆上的一点,过坐标原点的直线交椭圆于两点,其中在第一象限,过轴的垂线,垂足为,连接,
(1)若直线的斜率均存在,问它们的斜率之积是否为定值,若是,求出这个定值,若不是,说明理由;
(2)若的延长线与椭圆的交点,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为F,椭圆C的离心率为是它们的一个交点,且
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知,点A,B为椭圆上的两点,且弦AB不平行于对称轴,的中点,试探究是否为定值,若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,O为原点,从椭圆的左焦点F引圆的切线FT交椭圆于点P,切点T位于F、P之间,M为线段FP的中点,M位于F、T之间,则的值为_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角坐标系中有一直角梯形的中点为,以为焦点的椭圆经过点.
(1)求椭圆的标准方程;
(2)若点,问是否存在直线与椭圆交于两点且,若存在,求出直线的斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点坐标为【   】
A.(-3,0)B.
C.D.

查看答案和解析>>

同步练习册答案