精英家教网 > 高中数学 > 题目详情
已知向量
a
=(cosx,-
1
2
),
b
=(
3
sinx,cos2x),x∈R,设函数f(x)=
a
b

(Ⅰ) 求f(x)的最小正周期.
(Ⅱ) 求f(x)在[0,
π
2
]上的最大值和最小值.
(Ⅰ)函数f(x)=
a
b
=(cosx,-
1
2
)•(
3
sinx,cos2x)
=
3
sinxcosx-
1
2
cos2x

=sin(2x-
π
6

最小正周期为:T=
2
=π.
(Ⅱ)当x∈[0,
π
2
]时,2x-
π
6
[-
π
6
6
]

由正弦函数y=sinx在[-
π
6
6
]
的性质可知,sinx∈[-
1
2
,1]

∴sin(2x-
π
6
∈[-
1
2
,1]

∴f(x)∈[-
1
2
,1],
所以函数f (x)在[0,
π
2
]上的最大值和最小值分别为:1,-
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,1),
b
=(-2,sinα),α∈(π,
2
)
,且
a
b

(1)求sinα的值;
(2)求tan(α+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos(-θ),sin(-θ)),
b
=(cos(
π
2
-θ),sin(
π
2
-θ))

(1)求证:
a
b

(2)若存在不等于0的实数k和t,使
x
=
a
+(t2+3)
b
y
=(-k
a
+t
b
),满足
x
y
,试求此时
k+t2
t
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosθ,sinθ),θ∈[0,π],向量
b
=(
3
,1),b=(
3
,1)
a
b
,则θ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα),
b
=(sinβ,-cosβ),则|
a
+
b
|最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosθ,sinθ),向量
b
=(2
2
,-1),则|3
a
-
b
|的最大值是
 

查看答案和解析>>

同步练习册答案