精英家教网 > 高中数学 > 题目详情
三角形的面积S=
1
2
(a+b+c)•r,a,b,c
为三角形的边长,r为三角形内切圆的半径,利用类比推理,可得出四面体的体积为(  )
A.V=
1
3
abc
B.V=
1
3
Sh
C.V=
1
3
(S1+S2+S3+S4)r
(S1,S2,S3,S4分别为四面体的四个面的面积,r为四面体内接球的半径)
D.V=
1
3
(ab+bc+ac)h,(h为四面体的高)
设四面体的内切球的球心为O,则球心O到四个面的距离都是r,
根据三角形的面积的求解方法:分割法,将O与四顶点连起来,可得四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和,
V=
1
3
(S1+S2+S3+S4)r

故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三角形的三边分别为a,b,c,内切圆的半径为r,则三角形的面积S=
1
2
(a+b+c)•r,四面体的四个面的面积分别为S1,S2,S3,S4,内切球的半径为R,类比三角形的面积可得四面体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B为锐角,角A,B,C的对边分别为a,b,c,且cos2A=
3
5
,sinB=
10
10

(1)求角C;
(2)若三角形的面积S=
1
2
,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形的面积S=
1
2
(a+b+c)•r,a,b,c
为三角形的边长,r为三角形内切圆的半径,利用类比推理,可得出四面体的体积为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,A,B为锐角,角A,B,C的对边分别为a,b,c,且cos2A=
3
5
,sinB=
10
10

(1)求角C;
(2)若三角形的面积S=
1
2
,求a,b,c的值.

查看答案和解析>>

同步练习册答案