精英家教网 > 高中数学 > 题目详情

集合A={x|x2-3x-10≤0},非空集合B={x|m+1≤x≤2m-1},若A∩B=B,求m的范围 ________.

[2,3]
分析:先求出集合A,然后将条件A∩B=B转化成B⊆A,建立不等关系,解之即可.
解答:A={x|x2-3x-10≤0}=[-2,5]
∵A∩B=B
∴B⊆A
解得m∈[2,3]
故答案为:[2,3]
点评:本题主要考查了集合的包含关系判断及应用,以及一元二次不等式的解法,同时考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、若集合A={x|x2-x+1≥0},B={x|x2-5x+4≤0},则A∩B=
{x|1≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-mx+m-1=0},若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2=4},B={x|ax=1},若B⊆A,则实数a的取值集合为
{0,-2,2}
{0,-2,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|x2+ax+1=0,x∈R},B={1,2},且A=B,求a的取值范围.

查看答案和解析>>

同步练习册答案